Canonical distributions and phase transitions
Discussiones Mathematicae. Probability and Statistics, Tome 20 (2000) no. 2, pp. 167-176

Voir la notice de l'article provenant de la source Library of Science

Entropy maximization subject to known expected values is extended to the case where the random variables involved may take on positive infinite values. As a result, an arbitrary probability distribution on a finite set may be realized as a canonical distribution. The Rényi entropy of the distribution arises as a natural by-product of this realization. Starting with the uniform distributionon a proper subset of a set, the canonical distribution of equilibriumstatistical mechanics may be used to exhibit an elementary phase transition, characterized by discontinuity of the partition function.
Keywords: canonical distribution, canonical ensemble, Gibbs state, phase transition, entropy maximization, Rényi entropy
@article{DMPS_2000_20_2_a0,
     author = {Athreya, K and Smith, J},
     title = {Canonical distributions and phase transitions},
     journal = {Discussiones Mathematicae. Probability and Statistics},
     pages = {167--176},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a0/}
}
TY  - JOUR
AU  - Athreya, K
AU  - Smith, J
TI  - Canonical distributions and phase transitions
JO  - Discussiones Mathematicae. Probability and Statistics
PY  - 2000
SP  - 167
EP  - 176
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a0/
LA  - en
ID  - DMPS_2000_20_2_a0
ER  - 
%0 Journal Article
%A Athreya, K
%A Smith, J
%T Canonical distributions and phase transitions
%J Discussiones Mathematicae. Probability and Statistics
%D 2000
%P 167-176
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a0/
%G en
%F DMPS_2000_20_2_a0
Athreya, K; Smith, J. Canonical distributions and phase transitions. Discussiones Mathematicae. Probability and Statistics, Tome 20 (2000) no. 2, pp. 167-176. http://geodesic.mathdoc.fr/item/DMPS_2000_20_2_a0/