@article{DMGT_2024_44_4_a7,
author = {Dorbec, Paul and Kaci, Fatma},
title = {Disjoint maximal independent sets in graphs and hypergraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1361--1371},
year = {2024},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a7/}
}
Dorbec, Paul; Kaci, Fatma. Disjoint maximal independent sets in graphs and hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1361-1371. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a7/
[1] B.D. Acharya, Domination in hypergraphs II}: New directions, in: Recent Trends in Discrete Mathematics, Mysore, 2008, B.D. Acharya, G.O.H. Katona and J. Nešetřil (Ed(s)), (Ramanujan Math. Soc. Lect. Notes Ser. Math. 2010) 1–18.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Elsevier Science Publishing Co., Inc., New York, 1976).
[3] E.J. Cockayne and S.T. Hedetniemi, Disjoint independent dominating sets in graphs, Discrete Math. 15 (1976) 213–222. https://doi.org/10.1016/0012-365X(76)90026-1
[4] P. Erdős, A.M. Hobbs and C. Payan, Disjoint cliques and disjoint maximal independent sets of vertices in graphs, Discrete Math. 42 (1982) 57–61. https://doi.org/10.1016/0012-365X(82)90053-X
[5] W. Goddard and M.A. Henning, Independent domination in graphs: A survey and recent results, Discrete Math. 313 (2013) 839–854. https://doi.org/10.1016/j.disc.2012.11.031
[6] M.A. Henning, C. Löwenstein and D. Rautenbach, Remarks about disjoint dominating sets, Discrete Math. 309 (2009) 6451–6458. https://doi.org/10.1016/j.disc.2009.06.017
[7] B.K. Jose and Zs. Tuza, Hypergraph domination and strong independence, Appl. Anal. Discrete Math. 3 (2009) 347–358. https://doi.org/10.2298/AADM0902347J
[8] C. Payan, Coverings by minimal transversals, Discrete Math. 23 (1978) 273–277. https://doi.org/10.1016/0012-365X(78)90008-0
[9] C. Payan, Sur une classe de problèmes de couverture, C.R. Acad. Sci. Paris Sér. A 278 (1974) 233–235.
[10] C. Payan, A counter-example to the conjecture "every nonempty regular simple graph contains two disjoint maximal independent sets", Graph Theory Newsletter 6 (1977) 7–8.
[11] O. Schaudt, On disjoint maximal independent sets in graphs, Inform. Process. Lett. 115 (2015) 23–27. https://doi.org/10.1016/j.ipl.2014.08.010