@article{DMGT_2024_44_4_a5,
author = {Tardif, Claude},
title = {Chromatic {Ramsey} numbers of generalised {Mycielski} graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1327--1339},
year = {2024},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a5/}
}
Tardif, Claude. Chromatic Ramsey numbers of generalised Mycielski graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1327-1339. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a5/
[1] S.A. Burr, P. Erdős and L. Lovász, On graphs of Ramsey type, Ars Combin. 1 (1976) 167–190.
[2] D. Duffus, B. Sands and R.E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (1985) 487–495. https://doi.org/10.1002/jgt.3190090409
[3] C. Godsil, D.E. Roberson, R. Šámal and S. Severini, Sabidussi versus Hedetniemi for three variations of the chromatic number, Combinatorica 36 (2016) 395–415. https://doi.org/10.1007/s00493-014-3132-1
[4] C. Godsil, D.E. Roberson, B. Rooney, R. Šámal and A. Varvitsiotis, Vector coloring the categorical product of graphs, Math. Program. 182 (2020) 275–314. https://doi.org/10.1007/s10107-019-01393-0
[5] S. Hedetniemi, Homomorphisms of graphs and automata, Technical Report 03105-44-T, University of Michigan (1966).
[6] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978) 319–324. https://doi.org/10.1016/0097-3165(78)90022-5
[7] T. Matsushita, \mathbb{Z}2-indices and Hedetniemi's conjecture, Discrete Comput. Geom. 62 (2019) 662–673. https://doi.org/10.1007/s00454-019-00090-1
[8] N. Paul and C. Tardif, The chromatic Ramsey number of odd wheels, J. Graph Theory 69 (2012) 198–205. https://doi.org/10.1002/jgt.20575
[9] Y. Shitov, Counterexamples to Hedetniemi's Conjecture, Ann. of Math. (2) 190 (2019) 663–667. https://doi.org/10.4007/annals.2019.190.2.6
[10] G. Simons, C. Tardif and D. Wehlau, Generalised Mycielski graphs, signature systems, and bounds on chromatic numbers, J. Combin. Theory Ser. B 122 (2017) 776–793. https://doi.org/10.1016/j.jctb.2016.09.007
[11] G. Simonyi and G. Tardos, Local chromatic number, Ky Fan's theorem, and circular colorings, Combinatorica 26 (2006) 587–626. https://doi.org/10.1007/s00493-006-0034-x
[12] G. Simonyi and A. Zsbán, On topological relaxations of chromatic conjectures, European J. Combin. 31 (2010) 2110–2119. https://doi.org/10.1016/j.ejc.2010.06.001
[13] G. Simonyi, C. Tardif and A. Zsbán, Colourful theorems and indices of homomorphism complexes, Electron. J. Combin. 20(1) (2013) #P10. https://doi.org/10.37236/2302
[14] M. Stiebitz, Beiträge zur Theorie der färbungskritischen Graphen, Habilitation Thesis (Technische Hochschule Ilmenau, 1985).
[15] P. Turán, A note of welcome, J. Graph Theory 1 (1977) 7–9. https://doi.org/10.1002/jgt.3190010105
[16] M. Wrochna, On inverse powers of graphs and topological implications of Hedetniemi's conjecture, J. Combin. Theory Ser. B 139 (2019) 267–295. https://doi.org/10.1016/j.jctb.2019.02.008
[17] X. Zhu, The fractional version of Hedetniemi's conjecture is true, European J. Combin. 32 (2011) 1168–1175. https://doi.org/10.1016/j.ejc.2011.03.004