@article{DMGT_2024_44_4_a21,
author = {Goedgebeur, Jan and Gringore, Thomas and Zamfirescu, Carol},
title = {On non-hamiltonian polyhedra without cubic vertices and their vertex-deleted subgraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1631--1646},
year = {2024},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a21/}
}
TY - JOUR AU - Goedgebeur, Jan AU - Gringore, Thomas AU - Zamfirescu, Carol TI - On non-hamiltonian polyhedra without cubic vertices and their vertex-deleted subgraphs JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 1631 EP - 1646 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a21/ LA - en ID - DMGT_2024_44_4_a21 ER -
%0 Journal Article %A Goedgebeur, Jan %A Gringore, Thomas %A Zamfirescu, Carol %T On non-hamiltonian polyhedra without cubic vertices and their vertex-deleted subgraphs %J Discussiones Mathematicae. Graph Theory %D 2024 %P 1631-1646 %V 44 %N 4 %U http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a21/ %G en %F DMGT_2024_44_4_a21
Goedgebeur, Jan; Gringore, Thomas; Zamfirescu, Carol. On non-hamiltonian polyhedra without cubic vertices and their vertex-deleted subgraphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1631-1646. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a21/
[1] G. Brinkmann and B.D. McKay, Fast generation of planar graphs, MATCH Commun. Math. Comput. Chem. 58 (2007) 323–357.
[2] K. Coolsaet, S. D'hondt and J. Goedgebeur, House of Graphs 2.0: A database of interesting graphs and more, Discrete Appl. Math. 325 (2023) 97–107. https://doi.org/10.1016/j.dam.2022.10.013
[3] I. Fabrici, T. Madaras, M. Timková, N. Van Cleemput and C.T. Zamfirescu, Non-hamiltonian graphs in which every edge-contracted subgraph is hamiltonian, Appl. Math. Comput. 392 (2021) 125714. https://doi.org/10.1016/j.amc.2020.125714
[4] J. Goedgebeur, B. Meersman and C.T. Zamfirescu, Graphs with few hamiltonian cycles, Math. Comp. 89 (2020) 965–991. https://doi.org/10.1090/mcom/3465
[5] J. Goedgebeur, A. Neyt and C.T. Zamfirescu, Structural and computational results on platypus graphs, Appl. Math. Comput. 386 (2020) 125491. https://doi.org/10.1016/j.amc.2020.125491
[6] B. Grünbaum, Vertices missed by longest paths or circuits, J. Combin. Theory Ser. A 17 (1974) 31–38. https://doi.org/10.1016/0097-3165(74)90025-9
[7] D.A. Holton and J. Sheehan, The Petersen Graph, Chapter 7: Hypohamiltonian graphs (Cambridge University Press, New York, 1993). https://doi.org/10.1017/CBO9780511662058.008
[8] D.A. Nelson, Hamiltonian Graphs, Master's Thesis (Vanderbilt University, 1973).
[9] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences (2023). https://oeis.org
[10] C. Thomassen, Hypohamiltonian graphs and digraphs, in: Theory and Aplications of Graphs, Lecture Notes in Math. 642, Y. Alavi and D.R. Lick (Ed(s)), (Springer, Berlin, Heidelberg 1978) 557–571. https://doi.org/10.1007/BFb0070410
[11] C. Thomassen, Planar cubic hypohamiltonian and hypotraceable graphs, J. Combin. Theory Ser. B 30 (1981) 36–44. https://doi.org/10.1016/0095-8956(81)90089-7
[12] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99–116. https://doi.org/10.1090/S0002-9947-1956-0081471-8
[13] C.T. Zamfirescu, Cubic vertices in planar hypohamiltonian graphs, J. Graph Theory 90 (2019) 189–207. https://doi.org/10.1002/jgt.22388
[14] C.T. Zamfirescu, Vertex degrees and 2-cuts in graphs with many hamiltonian vertex-deleted subgraphs, Inform. Process. Lett. 174 (2022) 106192. https://doi.org/10.1016/j.ipl.2021.106192
[15] C.T. Zamfirescu, On the hamiltonicity of a planar graph and its vertex-deleted subgraphs, J. Graph Theory 102 (2023) 180–193. https://doi.org/10.1002/jgt.22864