@article{DMGT_2024_44_4_a20,
author = {Fu, Lingting and Wang, Jian and Yang, Weihua},
title = {The maximum number of edges in a $\{K_{r+1},M_{k+1}\}$-free graph},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1617--1629},
year = {2024},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a20/}
}
TY - JOUR
AU - Fu, Lingting
AU - Wang, Jian
AU - Yang, Weihua
TI - The maximum number of edges in a $\{K_{r+1},M_{k+1}\}$-free graph
JO - Discussiones Mathematicae. Graph Theory
PY - 2024
SP - 1617
EP - 1629
VL - 44
IS - 4
UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a20/
LA - en
ID - DMGT_2024_44_4_a20
ER -
Fu, Lingting; Wang, Jian; Yang, Weihua. The maximum number of edges in a $\{K_{r+1},M_{k+1}\}$-free graph. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1617-1629. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a20/
[1] H.L. Abbott, D. Hanson and N. Sauer, Intersection theorems for systems of sets, J. Combin. Theory Ser. A 12 (1972) 381–389. https://doi.org/10.1016/0097-3165(72)90103-3
[2] J. Akiyama and P. Frankl, On the size of graphs with complete-factors, J. Graph Theory 9 (1985) 197–201. https://doi.org/10.1002/jgt.3190090117
[3] N. Alon and P. Frankl, Turán graphs with bounded matching number (2022). arXiv: 2210.15076
[4] N. Alon, M. Krivelevich and B. Sudakov, Turán numbers of bipartite graphs and related Ramsey-type questions, Combin. Probab. Comput. 12 (2003) 477–494. https://doi.org/10.1017/S0963548303005741
[5] I. Anderson, Perfect matching of a graph, J. Combin. Theory. Ser. B 10 (1971) 183–186. https://doi.org/10.1016/0095-8956(71)90041-4
[6] C. Berge, Sur le couplage maximum d'un graphe, C.R. Acad. Sci. Paris 247 (1958) 2–29.
[7] C. Berge, The Theory of Graphs and its Applications (Methuen, London and Wiley, New York, 1962).
[8] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).
[9] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank and A. Schrijver, Combinatorial Optimization (Wiley, 1998). https://doi.org/10.1002/9781118033142
[10] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta. Math. Hungar. 10 (1959) 337–356. https://doi.org/10.1007/BF02024498
[11] Z. Füredi, On a Turán type problem of Erdős, Combinatorica 11 (1991) 75–79. https://doi.org/10.1007/BF01375476
[12] F. Gavril, Testing for equality between maximum matching and minimum node covering, Inform. Process. Lett. 6 (1977) 199–202. https://doi.org/10.1016/0020-0190(77)90068-0
[13] P. Hall, On representatives of subsets, in: Classic Papers in Combinatorics, I. Gessel and G.-C. Rota (Ed(s)), (Modern Birkkäuser Classic 1987) 58–62. https://doi.org/10.1007/978-0-8176-4842-8_4
[14] D. König, Theorie der endlichen und unendlichen Graphen (Akademischen Verlagsgesellchaft, Leipig, 1936).
[15] P. Kővári, V.T. Sós and P. Turán, On a problem of Zarankiewicz, Colloq. Math. 3 (1954) 50–57.
[16] W. Mantel, Problem 28, Wiskundige Opgaven 10 (1907) 60–61.
[17] M.D. Plummer and L. Lovász, Matching Theory (Elsevier, 1986).
[18] A. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Combin. 11 (1995) 179–199. https://doi.org/10.1007/BF01929486
[19] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452, in Hungarian.
[20] W.T. Tutte, The factorization of linear graphs, J. Lond. Math. Soc. 22 (1947) 107–111. https://doi.org/10.1112/jlms/s1-22.2.107
[21] D.B. West, A short proof of the Berge-Tutte Formula and the Gallai-Edmonds Structure Theorem, European J. Combin. 32 (2011) 674–676. https://doi.org/10.1016/j.ejc.2011.01.009
[22] L.-T. Yuan, Extremal graphs for the k-flower, J. Graph Theory 89 (2018) 26–39. https://doi.org/10.1002/jgt.22237
[23] L.-T. Yuan, Extremal graphs for odd wheels, J. Graph Theory 98 (2021) 691–707. https://doi.org/10.1002/jgt.22727
[24] L.-T. Yuan, Extremal graphs for edge blow-up of graphs, J. Combin. Theory. Ser. B. 152 (2022) 379–398. https://doi.org/10.1016/j.jctb.2021.10.006
[25] A.A. Zykov, On some properties of linear complexes, Mat. Sb. (N.S.) 24(66) (1949) 163–188, in Russian.