Online size Ramsey number for $C_4$ and $P_6$
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1607-1615 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

In this paper we consider a game played on the edge set of the infinite clique K_ℕ by two players, Builder and Painter. In each round of the game, Builder chooses an edge and Painter colors it red or blue. Builder wins when Painter creates a red copy of G or a blue copy of H, for some fixed graphs G and H. Builder wants to win in as few rounds as possible, and Painter wants to delay Builder for as many rounds as possible. The online size Ramsey number r̃(G,H), is the minimum number of rounds within which Builder can win, assuming both players play optimally. So far it has been proven by Dybizbański, Dzido and Zakrzewska that 11≤r̃(C_4,P_6)≤13 [J. Dybizbański, T. Dzido and R. Zakrzewska, On-line Ramsey numbers for paths and short cycles, Discrete Appl. Math. 282 (2020) 265–270]. In this paper, we refine this result and show the exact value, namely we will present the theorem that r̃(C_4,P_6)=11, with the details of the proof.
Keywords: graph theory, Ramsey theory, combinatorial games, online size Ramsey number
@article{DMGT_2024_44_4_a19,
     author = {Litka, Mateusz},
     title = {Online size {Ramsey} number for $C_4$ and $P_6$},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1607--1615},
     year = {2024},
     volume = {44},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a19/}
}
TY  - JOUR
AU  - Litka, Mateusz
TI  - Online size Ramsey number for $C_4$ and $P_6$
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 1607
EP  - 1615
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a19/
LA  - en
ID  - DMGT_2024_44_4_a19
ER  - 
%0 Journal Article
%A Litka, Mateusz
%T Online size Ramsey number for $C_4$ and $P_6$
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 1607-1615
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a19/
%G en
%F DMGT_2024_44_4_a19
Litka, Mateusz. Online size Ramsey number for $C_4$ and $P_6$. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1607-1615. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a19/

[1] J. Beck, Achievement games and the probabilistic method, in: Combinatorics, Paul Erdős is Eighty, Bolyai Society of Mathematical Studies 1 (1993) 51–78.

[2] J. Cyman, T. Dzido, J. Lapinskas and A. Lo, On-line Ramsey numbers for paths and cycles, Electron. J. Combin. 22 (2015) #P1.15. https://doi.org/10.37236/4097

[3] J. Dybizbański, T. Dzido and R. Zakrzewska, On-line Ramsey numbers for paths and short cycles, Discrete Appl. Math. 282 (2020) 265–270. https://doi.org/10.1016/j.dam.2020.03.004

[4] J.A. Grytczuk, H.A. Kierstead and P. Prałat, On-line Ramsey numbers for paths and stars, Discrete Math. Theor. Comput. Sci. 10(3) (2008) 63–74. https://doi.org/10.46298/dmtcs.427

[5] A. Kurek and A. Ruciński, Two variants of the size Ramsey number, Discuss. Math. Graph Theory 25 (2005) 141–149. https://doi.org/10.7151/dmgt.1268

[6] M. Litka, Online Size Ramsey Number for Cycles and Paths, Master's Thesis (Adam Mickiewicz University, Poznań, 2022).

[7] M. Litka, Online size Ramsey number for C4 and P6 (2023). arXiv: 2305.04305

[8] P. Prałat, A note on small on-line Ramsey numbers for paths and their generalization, Australas. J. Combin. 40 (2008) 27–36.

[9] P. Prałat, \tilde{R}(3,4)=17, Electron. J. Combin. 15 (2008) #R67. https://doi.org/10.37236/791

[10] P. Prałat, A note on off-diagonal small on-line Ramsey numbers for paths, Ars Combin. 107 (2012) 295–306.