@article{DMGT_2024_44_4_a16,
author = {Alikhani, Saeid and Bakhshesh, Davood and Golmohammadi, Hamidreza and Konstantinova, Elena V.},
title = {Connected coalitions in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1551--1566},
year = {2024},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a16/}
}
TY - JOUR AU - Alikhani, Saeid AU - Bakhshesh, Davood AU - Golmohammadi, Hamidreza AU - Konstantinova, Elena V. TI - Connected coalitions in graphs JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 1551 EP - 1566 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a16/ LA - en ID - DMGT_2024_44_4_a16 ER -
%0 Journal Article %A Alikhani, Saeid %A Bakhshesh, Davood %A Golmohammadi, Hamidreza %A Konstantinova, Elena V. %T Connected coalitions in graphs %J Discussiones Mathematicae. Graph Theory %D 2024 %P 1551-1566 %V 44 %N 4 %U http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a16/ %G en %F DMGT_2024_44_4_a16
Alikhani, Saeid; Bakhshesh, Davood; Golmohammadi, Hamidreza; Konstantinova, Elena V. Connected coalitions in graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1551-1566. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a16/
[1] S. Alikhani, D. Bakhshesh and H.R. Golmohammadi, Introduction to total coalitions in graphs. arXiv: 2211.11590
[2] S. Alikhani, H. Golmohammadi and E.V. Konstantinova, Coalition of cubic graphs of order at most 10, Commun. Comb. Optim. 9 (2024) 437–450. https://doi.org/10.22049/cco.2023.28328.1507
[3] S. Alikhani and S. Soltani, Distinguishing number and distinguishing index of natural and fractional powers of graphs, Bull. Iranian Math. Soc. 43 (2017) 2471–2482.
[4] D. Bakhshesh, M.A. Henning and D. Pradhan, On the coalition number of trees, Bull. Malays. Math. Sci. Soc. 46 (2023) 95. https://doi.org/10.1007/s40840-023-01492-4
[5] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247–261. https://doi.org/10.1002/net.3230070305
[6] D.-Z. Du and P.-J. Wan, Connected Dominating Set: Theory and Applications (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-5242-3
[7] B.L. Hartnell and D.F. Rall, Connected domatic number in planar graphs, Czechoslovak Math. J. 51 (2001) 173–179. https://doi.org/10.1023/A:1013770108453
[8] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Introduction to coalitions in graphs, AKCE Int. J. Graphs Comb. 17 (2020) 653–659. https://doi.org/10.1080/09728600.2020.1832874
[9] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Coalition graphs of paths, cycles and trees, Discuss. Math. Graph Theory 43 (2023) 931–946. https://doi.org/10.7151/dmgt.2416
[10] T.W. Haynes, J.T. Hedetniemi, S.T. Hedetniemi, A.A. McRae and R. Mohan, Upper bounds on the coalition number, Australas. J. Combin. 80 (2021) 442–453.
[11] T.W. Haynes, S.T. Hedetniemi and M.A.Henning, Topics in Domination in Graphs (Dev. Math. 64 Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-51117-3
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Boca Ratan, CRC Press, New York, 1998). https://doi.org/10.1201/9781482246582
[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics (Routledge, Inc., New York, 1998). https://doi.org/10.1201/9781315141428
[14] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979) 607–613.
[15] B. Zelinka, Domatic number and degrees of vertices of a graph, Math. Slovaca 33 (1983) 145–147.
[16] B. Zelinka, On domatic numbers of graphs, Math. Slovaca 31 (1981) 91–95.
[17] B. Zelinka, Connected domatic number of a graph, Math. Slovaca 36 (1986) 387–392.