@article{DMGT_2024_44_4_a12,
author = {Cichacz, Sylwia and G\H{o}rlich, Agnieszka and Suchan, Karol},
title = {$k$-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1471--1484},
year = {2024},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a12/}
}
TY - JOUR AU - Cichacz, Sylwia AU - Gőrlich, Agnieszka AU - Suchan, Karol TI - $k$-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$ JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 1471 EP - 1484 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a12/ LA - en ID - DMGT_2024_44_4_a12 ER -
%0 Journal Article %A Cichacz, Sylwia %A Gőrlich, Agnieszka %A Suchan, Karol %T $k$-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$ %J Discussiones Mathematicae. Graph Theory %D 2024 %P 1471-1484 %V 44 %N 4 %U http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a12/ %G en %F DMGT_2024_44_4_a12
Cichacz, Sylwia; Gőrlich, Agnieszka; Suchan, Karol. $k$-fault-tolerant graphs for $p$ disjoint complete graphs of order $c$. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1471-1484. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a12/
[1] M. Ajtai, N. Alon, J. Bruck, R. Cypher, C.T. Ho, M. Naor and E. Szemerédi, Fault tolerant graphs, perfect hash functions and disjoint paths, in: Proc. 33rd Annual Symposium on Foundations of Computer Science, (IEEE 1992) 693–702. https://doi.org/10.1109/SFCS.1992.267781
[2] N. Alon and F.R.K. Chung, Explicit construction of linear sized tolerant networks, Discrete Math. 72 (1988) 15–19. https://doi.org/10.1016/j.disc.2006.03.025
[3] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (SIAM, 1999). https://doi.org/10.1137/1.9780898719796
[4] J. Bruck, R. Cypher and C.T. Ho, Fault-Tolerant Parallel Architectures with Minimal Numbers of Spares (IBM Research Report, 1991).
[5] S. Cichacz and K. Suchan, Minimum k-critical bipartite graphs, Discrete Appl. Math. 302 (2021) 54–66. https://doi.org/10.1016/j.dam.2021.06.005
[6] R. Diestel, Graph Theory (Grad. Texts in Math., Springer Nature, Berlin, 2017). https://doi.org/10.1007/978-3-662-53622-3
[7] A. Dudek, A. Szymański and M. Zwonek, (H, k)-stable graphs with minimum size, Discuss. Math. Graph Theory 28 (2008) 137–149. https://doi.org/10.7151/dmgt.1397
[8] S. Dutt and J.P. Hayes, Designing fault-tolerant systems using automorphisms, J. Parallel Distrib. Comput. 12 (1991) 249–268. https://doi.org/10.1016/0743-7315(91)90129-W
[9] O. Favaron, On k-factor-critical graphs, Discuss. Math. Graph Theory 16 (1996) 41–51. https://doi.org/10.7151/dmgt.1022
[10] J.P. Hayes, A graph model for fault-tolerant computing systems, IEEE Trans. Comput. C-25 (1976) 875–884. https://doi.org/10.1109/TC.1976.1674712
[11] L. Lovász, On the structure of factorizable graphs, Acta Math. Acad. Sci. Hungar. 23 (1972) 179–195. https://doi.org/10.1007/BF01889914
[12] Y. Lu, H. Salemi, B. Balasundaram and A. Buchanan, On fault-tolerant low-diameter clusters in graphs, INFORMS J. Comput. 34 (2022) 2867–3350. https://doi.org/10.1287/ijoc.2022.1231
[13] F. Mahdavi Pajouh, V. Boginski and E.L. Pasiliao, Minimum vertex blocker clique problem, Networks 64 (2014) 48–64. https://doi.org/10.1002/net.21556
[14] J. Przyby\l o and A. Żak, Largest component and node fault tolerance for grids, Electron. J. Combin. 28 (2021) #P1.44. https://doi.org/10.37236/8376
[15] T. Yamada and S. Ueno, Optimal fault-tolerant linear arrays, in: Proc. of the Fifteenth Annual ACM Symp. on Parallel Algorithms and Architectures, (ACM 2003) 60–64. https://doi.org/10.1145/777412.777423
[16] S. Ueno, A. Bagchi, S.L. Hakimi and E.F. Schmeichel, On minimum fault-tolerant networks, SIAM J. Discrete Math. 6 (1993) 565–574. https://doi.org/10.1137/0406044
[17] Q. Yu, Characterizations of various matching extensions in graphs, Australas. J. Combin. 7 (1993) 55–64.
[18] L. Zhang, Fault tolerant networks with small degree, in: Proc. of the Twelfth Annual ACM Symp. on Parallel Algorithms and Architectures, (ACM 2000) 64–69. https://doi.org/10.1145/341800.341809
[19] Z.-B. Zhang, X. Zhang, D. Lou and X. Wen, Minimum size of n-factor-critical graphs and k-extendable graphs, Graphs Combin. 28 (2012) 433–448. https://doi.org/10.1007/s00373-011-1045-y
[20] A. Żak, {On (Kq;k)-stable graphs}, J. Graph Theory 74 (2013) 216–221. https://doi.org/10.1002/jgt.21705
[21] A. Żak, A generalization of an independent set with application to (Kq;k)-stable graphs, Discrete Appl. Math. 162 (2014) 421–427. https://doi.org/10.1016/j.dam.2013.08.036