@article{DMGT_2024_44_4_a11,
author = {de Oliveira, Deise L. and Artigas, Danilo and Dantas, Simone and Luiz, At{\'\i}lio G.},
title = {On the edge-sum distinguishing game},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1449--1469},
year = {2024},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a11/}
}
TY - JOUR AU - de Oliveira, Deise L. AU - Artigas, Danilo AU - Dantas, Simone AU - Luiz, Atílio G. TI - On the edge-sum distinguishing game JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 1449 EP - 1469 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a11/ LA - en ID - DMGT_2024_44_4_a11 ER -
de Oliveira, Deise L.; Artigas, Danilo; Dantas, Simone; Luiz, Atílio G. On the edge-sum distinguishing game. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1449-1469. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a11/
[1] J. Bok and N. Jedličková, Edge-sum distinguishing labeling, Comment. Math. Univ. Carolin. 62 (2021) 135–149. https://doi.org/10.14712/1213-7243.2021.010
[2] E. Boudreau, B. Hartnell, K. Schmeisser and J. Whiteley, A game based on vertex-magic total labelings, Australas. J. Combin. 29 (2004) 67–73.
[3] H. Enomoto, A. Lhadó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105–109. https://doi.org/10.55937/sut/991985322
[4] L. Frickes, S. Dantas and A.G. Luiz, The graceful game, in: Proc. 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, (Enschede, Netherlands 2019) 45–48.
[5] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2022) #DS6. https://doi.org/10.37236/27
[6] R.L. Graham and N.J. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Meth. 1 (1980) 382–404. https://doi.org/10.1137/0601045
[7] B. Hartnell and D. Rall, A vertex-magic edge labeling game, Congr. Numer. 161 (2003) 163–167.
[8] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, Inc., San Diego, 1990).
[9] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451–461. https://doi.org/10.4153/CMB-1970-084-1
[10] B. Liu and X. Zhang, On harmonious labelings of graphs, Ars Combin. 36 (1993) 315–326.
[11] D.L. Oliveira, S. Dantas and A.G. Luiz, Results on the graceful game and range-relaxed graceful game, in: Extended Abstracts EuroComb 2021, Trends in Mathematics 14, J. Nešetřil, G. Perarnau, J. Rué and O. Serra (Ed(s)), (Birkhauser, Cham 2021) 214–220. https://doi.org/10.1007/978-3-030-83823-2_34
[12] J. Sedláček, Problem 27, in: Theory of Graphs and Its Applications, Proc. Symp. Smolenice 1963, (Nakl. CSAV, Praha 1963) 163–164.
[13] E. Sidorowicz, Colouring game and generalized colouring game on graphs with cut-vertices, Discuss. Math. Graph Theory 30 (2010) 499–533. https://doi.org/10.7151/dmgt.1510
[14] Zs. Tuza, Graph labeling games, Electron. Notes Discrete Math. 60 (2017) 61–68. https://doi.org/10.1016/j.endm.2017.06.009