@article{DMGT_2024_44_4_a10,
author = {Lei, Lan and Li, Xiaomin and Song, Sulin and Xie, Yikang and Lai, Hong-Jian},
title = {Spanning trails avoiding and containing given edges},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1429--1447},
year = {2024},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a10/}
}
TY - JOUR AU - Lei, Lan AU - Li, Xiaomin AU - Song, Sulin AU - Xie, Yikang AU - Lai, Hong-Jian TI - Spanning trails avoiding and containing given edges JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 1429 EP - 1447 VL - 44 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a10/ LA - en ID - DMGT_2024_44_4_a10 ER -
%0 Journal Article %A Lei, Lan %A Li, Xiaomin %A Song, Sulin %A Xie, Yikang %A Lai, Hong-Jian %T Spanning trails avoiding and containing given edges %J Discussiones Mathematicae. Graph Theory %D 2024 %P 1429-1447 %V 44 %N 4 %U http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a10/ %G en %F DMGT_2024_44_4_a10
Lei, Lan; Li, Xiaomin; Song, Sulin; Xie, Yikang; Lai, Hong-Jian. Spanning trails avoiding and containing given edges. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1429-1447. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a10/
[1] C. Balbuena, X. Marcote and P. García-Vázquez, On restricted connectivities of permutation graphs, Networks 45 (2005) 113–118. https://doi.org/10.1002/net.20056
[2] C. Balbuena, P. García-Vázquez and X. Marcote, Reliability of interconnection networks modelled by a product of graphs, Networks 48 (2006) 114–120. https://doi.org/10.1002/net.20124
[3] J.C. Bermond, C. Delorme and G. Farhi, Large graphs with given degree and diameter II}, J. Combin. Theory Ser. B 36 (1984) 32–84. https://doi.org/10.1016/0095-8956(84)90012-1
[4] F.T. Boesch, C. Suffel and R. Tindell, The spanning subgraphs of eulerian graphs, J. Graph Theory 1 (1977) 79–84. https://doi.org/10.1002/jgt.3190010115
[5] A.J. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, 1976).
[6] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29–44. https://doi.org/10.1002/jgt.3190120105
[7] P.A. Catlin, Supereulerian graphs: A survey, J. Graph Theory 16 (1992) 177–196. https://doi.org/10.1002/jgt.3190160209
[8] P.A. Catlin, Z.-Y. Han and H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81–91. https://doi.org/10.1016/S0012-365X(95)00149-Q
[9] P.A. Catlin, T. Iqbalunnisa, T.N. Janakiraman and N. Srinivasan, Hamilton cycles and closed trails in iterated line graphs, J. Graph Theory 14 (1990) 347–364. https://doi.org/10.1002/jgt.3190140308
[10] G. Chartrand and J. Frechen, On the chromatic number of permutation graphs, in: Proof Techniques in Graph Theory, Proceedings of the Second Ann Arbor Graph Theory Conference, F. Harary (Ed(s)), (Academic Press, New York, London 1969) 21–24.
[11] G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. Henri Poincaré Probab. Stat. 3 (1967) 433–438.
[12] Z.H. Chen and H.-J. Lai, Reduction techniques for supereulerian graphs and related topics–-a survey, in: Combinatorics and Graph Theory'95, T.-H. Gu (Ed(s)), (World Sci. Pub. River Edge N.J. 1995) 53–69.
[13] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, 1979).
[14] R. Gu, H.-J. Lai, Y. Liang, Z. Miao and M. Zhang, Collapsible subgraphs of a 4-edge-connected graph, Discrete Appl. Math. 260 (2019) 272–277. https://doi.org/10.1016/j.dam.2019.01.033
[15] A.M. Hobbs, Network survivability, in: Appl. Discrete Math., J.G. Michaels and K.H. Rosen (Ed(s)), (McGraw-Hill 1991) 332–353.
[16] H.-J. Lai, Large survivable nets and the generalized prisms, Discrete Appl. Math. 61 (1995) 181–185. https://doi.org/10.1016/0166-218X(94)00131-V
[17] H.-J. Lai, Y. Shao and H. Yan, An update on supereulerian graphs, WSEAS Transactions on Mathematics 12 (2013) 926–940.
[18] L. Lei, X. Li and B. Wang, On (s,t)-supereulerian locally connected graphs, in: International Conference on Computational Science, Y. Shi, G.D. Albada, J. Dongarra and P.M.A. Sloot (Ed(s)), (Springer 2007) 384–388.
[19] L. Lei and X. Li, A note on the connectivity of generalized prisms, J. Southwest China Normal University (Natural Science Edition) 33 (2008) 1–3.
[20] L. Lei, X. Li, B. Wang and H.-J. Lai, On (s,t)-supereulerian graphs in locally highly connected graphs, Discrete Math. 310 (2010) 929–934. https://doi.org/10.1016/j.disc.2009.08.012
[21] X. Li, L. Lei and H.-J. Lai, The connectivity of generalized graph products, Inform. Process. Lett. 136 (2018) 37–40. https://doi.org/10.1016/j.ipl.2018.03.014
[22] B.L. Piazza and R.D. Ringeisen, Connectivity of generalized prisms over G, Discrete Appl. Math. 30 (1991) 229–233. https://doi.org/10.1016/0166-218X(91)90047-Z
[23] W.R. Pulleyblank, A note on graphs spanned by Eulerian graphs, J. Graph Theory 3 (1979) 309–310. https://doi.org/10.1002/jgt.3190030316
[24] R.D. Ringeisen, On cycle permutation graphs, Discrete Math. 51 (1984) 265–275. https://doi.org/10.1016/0012-365X(84)90007-4
[25] W. Xiong, S. Song and H.-J. Lai, Polynomially determine if a graph is (s,3)-supereulerian, Discrete Math. 344(12) (2021) 112601. https://doi.org/10.1016/j.disc.2021.112601
[26] X. Zhu, A hypercube variant with small diameter, J. Graph Theory 85 (2017) 651–660. https://doi.org/10.1002/jgt.22096