Total vertex product irregularity strength of graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1261-1276 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

Consider a simple graph G. We call a labeling w:E(G)∪ V(G)→{1, 2, …, s} (total vertex) product-irregular, if all product degrees pd_G(v) induced by this labeling are distinct, where pd_G(v)=w(v)×∏_e∈ vw(e). The strength of w is s, the maximum number used to label the members of E(G)∪ V(G). The minimum value of s that allows some irregular labeling is called the total vertex product irregularity strength and denoted tvps(G). We provide some general bounds, as well as exact values for chosen families of graphs.
Keywords: product-irregular labeling, total vertex product irregularity strength, vertex-distinguishing labeling
@article{DMGT_2024_44_4_a1,
     author = {Anholcer, Marcin and Emadi, Azam Sadat and Mojdeh, Doost Ali},
     title = {Total vertex product irregularity strength of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1261--1276},
     year = {2024},
     volume = {44},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a1/}
}
TY  - JOUR
AU  - Anholcer, Marcin
AU  - Emadi, Azam Sadat
AU  - Mojdeh, Doost Ali
TI  - Total vertex product irregularity strength of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 1261
EP  - 1276
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a1/
LA  - en
ID  - DMGT_2024_44_4_a1
ER  - 
%0 Journal Article
%A Anholcer, Marcin
%A Emadi, Azam Sadat
%A Mojdeh, Doost Ali
%T Total vertex product irregularity strength of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 1261-1276
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a1/
%G en
%F DMGT_2024_44_4_a1
Anholcer, Marcin; Emadi, Azam Sadat; Mojdeh, Doost Ali. Total vertex product irregularity strength of graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1261-1276. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a1/

[1] M. Aigner and E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990) 439–449. https://doi.org/10.1137/0403038

[2] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15–38. https://doi.org/10.1016/S0012-365X(98)00112-5

[3] M. Anholcer, Product irregularity strength of graphs, Discrete Math. 309 (2009) 6434–6439. https://doi.org/10.1016/j.disc.2008.10.014

[4] M. Anholcer, Product irregularity strength of certain graphs, Ars Math. Contemp. 7 (2014) 23–29. https://doi.org/10.26493/1855-3974.258.2a0

[5] M. Anholcer, M. Kalkowski and J. Przybyło, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math. 309 (2009) 6316–6317. https://doi.org/10.1016/j.disc.2009.05.023

[6] M. Anholcer and C. Palmer, Irregular labellings of circulant graphs, Discrete Math. 312 (2012) 3461–3466. https://doi.org/10.1016/j.disc.2012.06.017

[7] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378–1388. https://doi.org/10.1016/j.disc.2005.11.075

[8] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187–192.

[9] R. Darda and A. Hujdurović, On bounds for the product irregularity strength of graphs, Graphs Combin. 31 (2015) 1347–1357. https://doi.org/10.1007/s00373-014-1458-5

[10] P. Erdős, On some applications of graph theory to number theoretic problems, Publ. Ramanujan Inst. 1 (1969) 131–136.

[11] R.J. Faudree and J. Lehel, Bounds on the irregularity strength of regular graphs, in: Colloquia Mathematica Societatis János Bolyai 52, Combinatorics, Eger (Hungary), (North-Holland, Amsterdam 1987) 239–246.

[12] M. Ferrara, R.J. Gould, M. Karoński and F. Pfender, An iterative approach to graph irregularity strength, Discrete Appl. Math. 158 (2010) 1189–1194. https://doi.org/10.1016/j.dam.2010.02.003

[13] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120–137. https://doi.org/10.1002/jgt.10056

[14] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 1319–1321. https://doi.org/10.1137/090774112

[15] J. Lehel, Facts and quests on degree irreglar assignments, in: Graph Theory, Combinatorics and Applications, (Wiley, New York 1991) 765–782.

[16] P. Majerski and J. Przybyło, On the irregularity strength of dense graphs, SIAM J. Discrete Math. 28 (2014) 197–205. https://doi.org/10.1137/120886650

[17] P. Majerski and J. Przybyło, Total vertex irregularity strength of dense graphs, J. Graph Theory 76 (2014) 34–41. https://doi.org/10.1002/jgt.21748

[18] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313–323. https://doi.org/10.1137/S0895480196314291

[19] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043–3048. https://doi.org/10.1016/j.disc.2010.06.041

[20] O. Pikhurko, Characterization of product anti-magic graphs of large order, Graphs Combin. 23 (2007) 681–689. https://doi.org/10.1007/s00373-007-0748-6

[21] J. Skowronek-Kaziów, 1,2-conjecture-the multiplicative version, Inform. Process. Lett. 107 (2008) 93–95. https://doi.org/10.1016/j.ipl.2008.01.006

[22] J. Skowronek-Kaziów, Multiplicative vertex-colouring weightings of graphs, Inform. Process. Lett. 112 (2012) 191–194. https://doi.org/10.1016/j.ipl.2011.11.009

[23] M. Tchebichef, Mémoire sur les nombres premiers, J. Math. Pures Appl. Série 1 17 (1852) 366–390.