@article{DMGT_2024_44_4_a0,
author = {Chen, Guantao and Hu, Zhiquan and Wu, Yaping},
title = {A {Chv\'atal-Erd\H{o}s} type theorem for path-connectivity},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1247--1260},
year = {2024},
volume = {44},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a0/}
}
Chen, Guantao; Hu, Zhiquan; Wu, Yaping. A Chvátal-Erdős type theorem for path-connectivity. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1247-1260. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a0/
[1] G.T. Chen, Z.Q. Hu and Y.P. Wu, Circumferences of k-connected graphs involving independence numbers, J. Graph Theory 68 (2011) 55–76. https://doi.org/10.1002/jgt.20540
[2] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111–113. https://doi.org/10.1016/0012-365X(72)90079-9
[3] J.L. Fouquet and J.L. Jolivet, Graphes hypohamiltoniens orientés, in: Problèmes combinatoires et thèorie des graphes, Proc. Coll. Orsay, 1976, (CNRS Publ., Paris 1978) 149–151.
[4] I. Fournier, Longest cycles in 2-connected graphs of independence number \alpha, Ann. Discrete Math. 27 (1985) 201–204. https://doi.org/10.1016/S0304-0208(08)73010-X
[5] I. Fournier, Thesis (Ph.D. Thesis, University Paris-XI, Orsay, 1982).
[6] Z.Q. Hu and F.F. Song, Long cycles passing through \left\lfloor\frac{4k+1}3\right\rfloor vertices in k-connected graphs, J. Graph Theory 87 (2018) 374–393. https://doi.org/10.1002/jgt.22164
[7] Z.Q. Hu, F. Tian and B. Wei, Long cycles through a linear forest, J. Combin. Theory Ser. B 82 (2001) 67–80. https://doi.org/10.1006/jctb.2000.2022
[8] M. Kouider, Cycles in graphs with prescribed stability number and connectivity, J. Combin. Theory Ser. B 60 (1994) 315–318. https://doi.org/10.1006/jctb.1994.1023
[9] Y. Manoussakis, Longest cycles in 3-connected graphs with given independence number, Graphs Combin. 25 (2009) 377–384. https://doi.org/10.1007/s00373-009-0846-8
[10] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 95–115. https://doi.org/10.4064/fm-10-1-96-115
[11] S. O, D.B. West and H.H. Wu, Longest cycles in k-connected graphs with given independence number, J. Combin. Theory Ser. B 101 (2011) 480–485. https://doi.org/10.1016/j.jctb.2011.02.005
[12] D.B. West, Introduction to Graph Theory (Prentice Hall Inc., Upper Saddle River, NJ, 1996).
[13] Y.P. Wu, On the Length of Longest Cycles and Codiameter of k-Connected Graphs (Ph.D Thesis, 2011).