A Chvátal-Erdős type theorem for path-connectivity
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1247-1260 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

For a graph G, let κ(G) and α(G) be the connectivity and independence number of G, respectively. A well-known theorem of Chvátal and Erdős says that if G is a graph of order n with κ(G) gt;α(G), then G is Hamilton-connected. In this paper, we prove the following Chvátal-Erdős type theorem: if G is a k-connected graph, k≥ 2, of order n with independence number α, then each pair of distinct vertices of G is joined by a Hamiltonian path or a path of length at least (k-1)max{n+α-kα, ⌊n+2α-2k+1α⌋}. Examples show that this result is best possible. We also strength it in terms of subgraphs.
Keywords: connectivity, independence number, Hamilton-connected, Chvátal-Erdős theorem
@article{DMGT_2024_44_4_a0,
     author = {Chen, Guantao and Hu, Zhiquan and Wu, Yaping},
     title = {A {Chv\'atal-Erd\H{o}s} type theorem for path-connectivity},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1247--1260},
     year = {2024},
     volume = {44},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a0/}
}
TY  - JOUR
AU  - Chen, Guantao
AU  - Hu, Zhiquan
AU  - Wu, Yaping
TI  - A Chvátal-Erdős type theorem for path-connectivity
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 1247
EP  - 1260
VL  - 44
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a0/
LA  - en
ID  - DMGT_2024_44_4_a0
ER  - 
%0 Journal Article
%A Chen, Guantao
%A Hu, Zhiquan
%A Wu, Yaping
%T A Chvátal-Erdős type theorem for path-connectivity
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 1247-1260
%V 44
%N 4
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a0/
%G en
%F DMGT_2024_44_4_a0
Chen, Guantao; Hu, Zhiquan; Wu, Yaping. A Chvátal-Erdős type theorem for path-connectivity. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1247-1260. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a0/

[1] G.T. Chen, Z.Q. Hu and Y.P. Wu, Circumferences of k-connected graphs involving independence numbers, J. Graph Theory 68 (2011) 55–76. https://doi.org/10.1002/jgt.20540

[2] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111–113. https://doi.org/10.1016/0012-365X(72)90079-9

[3] J.L. Fouquet and J.L. Jolivet, Graphes hypohamiltoniens orientés, in: Problèmes combinatoires et thèorie des graphes, Proc. Coll. Orsay, 1976, (CNRS Publ., Paris 1978) 149–151.

[4] I. Fournier, Longest cycles in 2-connected graphs of independence number \alpha, Ann. Discrete Math. 27 (1985) 201–204. https://doi.org/10.1016/S0304-0208(08)73010-X

[5] I. Fournier, Thesis (Ph.D. Thesis, University Paris-XI, Orsay, 1982).

[6] Z.Q. Hu and F.F. Song, Long cycles passing through \left\lfloor\frac{4k+1}3\right\rfloor vertices in k-connected graphs, J. Graph Theory 87 (2018) 374–393. https://doi.org/10.1002/jgt.22164

[7] Z.Q. Hu, F. Tian and B. Wei, Long cycles through a linear forest, J. Combin. Theory Ser. B 82 (2001) 67–80. https://doi.org/10.1006/jctb.2000.2022

[8] M. Kouider, Cycles in graphs with prescribed stability number and connectivity, J. Combin. Theory Ser. B 60 (1994) 315–318. https://doi.org/10.1006/jctb.1994.1023

[9] Y. Manoussakis, Longest cycles in 3-connected graphs with given independence number, Graphs Combin. 25 (2009) 377–384. https://doi.org/10.1007/s00373-009-0846-8

[10] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 95–115. https://doi.org/10.4064/fm-10-1-96-115

[11] S. O, D.B. West and H.H. Wu, Longest cycles in k-connected graphs with given independence number, J. Combin. Theory Ser. B 101 (2011) 480–485. https://doi.org/10.1016/j.jctb.2011.02.005

[12] D.B. West, Introduction to Graph Theory (Prentice Hall Inc., Upper Saddle River, NJ, 1996).

[13] Y.P. Wu, On the Length of Longest Cycles and Codiameter of k-Connected Graphs (Ph.D Thesis, 2011).