A Chvátal-Erdős type theorem for path-connectivity
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1247-1260

Voir la notice de l'article provenant de la source Library of Science

For a graph G, let κ(G) and α(G) be the connectivity and independence number of G, respectively. A well-known theorem of Chvátal and Erdős says that if G is a graph of order n with κ(G) gt;α(G), then G is Hamilton-connected. In this paper, we prove the following Chvátal-Erdős type theorem: if G is a k-connected graph, k≥ 2, of order n with independence number α, then each pair of distinct vertices of G is joined by a Hamiltonian path or a path of length at least (k-1)max{n+α-kα, ⌊n+2α-2k+1α⌋}. Examples show that this result is best possible. We also strength it in terms of subgraphs.
Keywords: connectivity, independence number, Hamilton-connected, Chvátal-Erdős theorem
@article{DMGT_2024_44_4_a0,
     author = {Chen, Guantao and Hu, Zhiquan and Wu, Yaping},
     title = {A {Chv\'atal-Erd\H{o}s} type theorem for path-connectivity},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1247--1260},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a0/}
}
TY  - JOUR
AU  - Chen, Guantao
AU  - Hu, Zhiquan
AU  - Wu, Yaping
TI  - A Chvátal-Erdős type theorem for path-connectivity
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 1247
EP  - 1260
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a0/
LA  - en
ID  - DMGT_2024_44_4_a0
ER  - 
%0 Journal Article
%A Chen, Guantao
%A Hu, Zhiquan
%A Wu, Yaping
%T A Chvátal-Erdős type theorem for path-connectivity
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 1247-1260
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a0/
%G en
%F DMGT_2024_44_4_a0
Chen, Guantao; Hu, Zhiquan; Wu, Yaping. A Chvátal-Erdős type theorem for path-connectivity. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 4, pp. 1247-1260. http://geodesic.mathdoc.fr/item/DMGT_2024_44_4_a0/