@article{DMGT_2024_44_3_a8,
author = {Chen, Hongzhang and Li, Jianxi and Xu, Shou-Jun},
title = {Spectral bounds for the zero forcing number of a graph},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {971--982},
year = {2024},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a8/}
}
TY - JOUR AU - Chen, Hongzhang AU - Li, Jianxi AU - Xu, Shou-Jun TI - Spectral bounds for the zero forcing number of a graph JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 971 EP - 982 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a8/ LA - en ID - DMGT_2024_44_3_a8 ER -
Chen, Hongzhang; Li, Jianxi; Xu, Shou-Jun. Spectral bounds for the zero forcing number of a graph. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 971-982. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a8/
[1] D. Amos, Y. Caro, R. Davila and R. Pepper, Upper bounds on the k-forcing number of a graph, Discrete Appl. Math. 181 (2015) 1–10. https://doi.org/10.1016/j.dam.2014.08.029
[2] F. Barioli, W. Barrett, S. Butler and et al., AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628–1648. https://doi.org/10.1016/j.laa.2007.10.009
[3] J. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London, 1976).
[4] A.E. Brouwer and W.H. Haemers, Spectra of Graphs (Springer, New York, 2012). https://doi.org/10.1007/978-1-4614-1939-6
[5] D. Burgarth and V. Giovannetti, Full control by locally induced relaxation, Phys. Rev. Lett. 99(10) (2007) 100501. https://doi.org/10.1103/PhysRevLett.99.100501
[6] S. Butler, Eigenvalues and Structures of Graphs, PhD Thesis (University of California, San Diego, 2008).
[7] Y. Caro and R. Pepper, Dynamic approach to k-forcing, Theory Appl. Graphs 2 (2) (2015) Article 2. https://doi.org/10.20429/tag.2015.020202
[8] F.R.K. Chung, Spectral Graph Theory (CBMS Reg. Conf. Ser. Math., 92 Providence, RI: AMS, 1997). https://doi.org/10.1090/cbms/092
[9] R. Davila and M.A. Henning, Zero forcing versus domination in cubic graphs, J. Comb. Optim. 41 (2021) 553–577. https://doi.org/10.1007/s10878-020-00692-z
[10] M. Gentner and D. Rautenbach, Some bounds on the zero forcing number of a graph, Discrete Appl. Math. 236 (2018) 203–213. https://doi.org/10.1016/j.dam.2017.11.015
[11] T. Kalinowski, N. Kam\u{c}ev and B. Sudakov, The zero forcing number of graphs, SIAM J. Discrete Math. 33 (2019) 95–115. https://doi.org/10.1137/17M1133051
[12] F.A. Taklimi, Zero Forcing Sets for Graphs, PhD Thesis (University of Regina, Regina, Canada, 2013).
[13] W.Q. Zhang, J.F. Wang, W.F. Wang and S. Ji, On the zero forcing number and spectral radius of graphs, Electron. J. Combin. 29 (1) (2022) #P1.33. https://doi.org/10.37236/10638