On the total domination number of total graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 933-951 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

Let G be a graph with no isolated vertex. A set D⊆ V(G) is a total dominating set of G if every vertex of G is adjacent to at least one vertex in D. The total domination number of G, denoted by γ_t(G), is the minimum cardinality among all total dominating sets of G. In this paper we study the total domination number of total graphs T(G) of simple graphs G. In particular, we give some relationships that exist between γ_t(T(G)) and other domination parameters of G and of some well-known graph operators on G. Finally, we provide closed formulas on γ_t(T(G)) for some well-known families of graphs G.
Keywords: total domination, graph operators, total graphs
@article{DMGT_2024_44_3_a6,
     author = {Cabrera-Mart{\'\i}nez, Abel and S\'anchez, Jos\'e L. and Sigarreta Almira, Jo\'se M.},
     title = {On the total domination number of total graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {933--951},
     year = {2024},
     volume = {44},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a6/}
}
TY  - JOUR
AU  - Cabrera-Martínez, Abel
AU  - Sánchez, José L.
AU  - Sigarreta Almira, Jośe M.
TI  - On the total domination number of total graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 933
EP  - 951
VL  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a6/
LA  - en
ID  - DMGT_2024_44_3_a6
ER  - 
%0 Journal Article
%A Cabrera-Martínez, Abel
%A Sánchez, José L.
%A Sigarreta Almira, Jośe M.
%T On the total domination number of total graphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 933-951
%V 44
%N 3
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a6/
%G en
%F DMGT_2024_44_3_a6
Cabrera-Martínez, Abel; Sánchez, José L.; Sigarreta Almira, Jośe M. On the total domination number of total graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 933-951. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a6/

[1] S. Bermudo, Total domination on tree operators (2022), manuscript.

[2] M. Behzad, A criterion for the planarity of the total graph of a graph, Math. Proc. Cambridge Philos. Soc. 63 (1967) 679–681. https://doi.org/10.1017/S0305004100041657

[3] M. Behzad and G. Chartrand, Total graphs and traversability, Proc. Edinb. Math. Soc. (2) 15 (1966) 117–120. https://doi.org/10.1017/S0013091500011421

[4] M. Behzad and H. Radjavi, Structure of regular total graphs, J. Lond. Math. Soc. 44 (1969) 433–436. https://doi.org/10.1112/jlms/s1-44.1.433

[5] A. Cabrera Martínez, S. Cabrera García, I. Peterin and I.G. Yero, The total co-independent domination number of some graph operations, Rev. Un. Mat. Argentina 63 (2022) 153–168. https://doi.org/10.33044/revuma.1652

[6] A. Cabrera Martínez, J.C. Hernández-Gómez, E. Parra-Inza and J.M. Sigarreta Almira, On the total outer k-independent domination number of graphs, Mathematics 8 (2020) 194. https://doi.org/10.3390/math8020194

[7] A. Cabrera Martínez, F.A. Hernández-Mira, J.M. Sigarreta Almira and I.G. Yero, On computational and combinatorial properties of the total co-independent domination number of graphs, Comput. J. 62 (2019) 97–108. https://doi.org/10.1093/comjnl/bxy038

[8] A. Cabrera Martínez and J.A. Rodríguez-Velázquez, Total domination in rooted product graphs, Symmetry 12 (2020) 1929. https://doi.org/10.3390/sym12111929

[9] A. Cabrera Martínez and J.A. Rodríguez-Velázquez, Total protection of le-xicographic product graph, Discuss. Math. Graph Theory 42 (2022) 967–984. https://doi.org/10.7151/dmgt.2318

[10] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211–219. https://doi.org/10.1002/net.3230100304

[11] M. El-Zahar, S. Gravier and A. Klobucar, On the total domination number of cross products of graphs, Discrete Math. 308 (2008) 2025–2029. https://doi.org/10.1016/j.disc.2007.04.034

[12] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math. 309 (2009) 32–63. https://doi.org/10.1016/j.disc.2007.12.044

[13] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graph, Graphs Combin. 21 (2005) 63–69. https://doi.org/10.1007/s00373-004-0586-8

[14] M.A. Henning, A. Yeo, Total Domination in Graphs (Springer New York, NY, 2013). https://doi.org/10.1007/978-1-4614-6525-6

[15] P.T. Ho, A note on the total domination number, Util. Math. 77 (2008) 97–100.

[16] F. Kazemnejad, B. Pahlavsay, E. Palezzato and M. Torielli, Total domination number of middle graphs, Electron. J. Graph Theory Appl. (EJGTA) 10 (2022) 275–288. https://doi.org/10.5614/ejgta.2022.10.1.19

[17] J. Krausz, Démonstration nouvelle d'un théorème de Whitney sur les réseaux, Mat. Fiz. Lapok 50 (1943) 75–85.

[18] V. Kulli and D.K. Patwari, On the total edge domination number of a graph, in: Proc. of the Symp. on Graph Theory and Combinatorics, (Centre Math. Sci., Trivandrum, India 1991) 75–81.

[19] J.A. Méndez-Bermúdez, R. Reyes, J.M. Rodríguez and J.M. Sigarreta, Hyperbolicity on graph operators, Symmetry 10 (2018) 360. https://doi.org/10.3390/sym10090360

[20] E. Murugan and J. Paulraj, On the domination number of a graph and its total graph, Discrete Math. Algorithms Appl. 12 (2020) 2050068. https://doi.org/10.1142/S1793830920500688

[21] B. Pahlavsay, E. Palezzato and M. Torielli, Domination for latin square graphs, Graphs Combin. 37 (2021) 971–985. https://doi.org/10.1007/s00373-021-02297-7

[22] D.F. Rall, Total domination in categorical products of graphs, Discuss. Math. Graph Theory 25 (2005) 35–44. https://doi.org/10.7151/dmgt.1257

[23] J.M. Sigarreta, Total domination on some graph operators, Mathematics 9 (2021) 241. https://doi.org/10.3390/math9030241

[24] T. Tamizh Chelvam and T. Asir, Domination in the total graph on Zn, Discrete Math. Algorithms Appl. 03 (2011) 413–421. https://doi.org/10.1142/S1793830911001309

[25] S.K. Vaidya and N.J. Kothari, Some new results on distance k-domination in graphs, Int. J. Comb. 2013 (2013) 795401. https://doi.org/10.1155/2013/795401