@article{DMGT_2024_44_3_a6,
author = {Cabrera-Mart{\'\i}nez, Abel and S\'anchez, Jos\'e L. and Sigarreta Almira, Jo\'se M.},
title = {On the total domination number of total graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {933--951},
year = {2024},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a6/}
}
TY - JOUR AU - Cabrera-Martínez, Abel AU - Sánchez, José L. AU - Sigarreta Almira, Jośe M. TI - On the total domination number of total graphs JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 933 EP - 951 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a6/ LA - en ID - DMGT_2024_44_3_a6 ER -
Cabrera-Martínez, Abel; Sánchez, José L.; Sigarreta Almira, Jośe M. On the total domination number of total graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 933-951. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a6/
[1] S. Bermudo, Total domination on tree operators (2022), manuscript.
[2] M. Behzad, A criterion for the planarity of the total graph of a graph, Math. Proc. Cambridge Philos. Soc. 63 (1967) 679–681. https://doi.org/10.1017/S0305004100041657
[3] M. Behzad and G. Chartrand, Total graphs and traversability, Proc. Edinb. Math. Soc. (2) 15 (1966) 117–120. https://doi.org/10.1017/S0013091500011421
[4] M. Behzad and H. Radjavi, Structure of regular total graphs, J. Lond. Math. Soc. 44 (1969) 433–436. https://doi.org/10.1112/jlms/s1-44.1.433
[5] A. Cabrera Martínez, S. Cabrera García, I. Peterin and I.G. Yero, The total co-independent domination number of some graph operations, Rev. Un. Mat. Argentina 63 (2022) 153–168. https://doi.org/10.33044/revuma.1652
[6] A. Cabrera Martínez, J.C. Hernández-Gómez, E. Parra-Inza and J.M. Sigarreta Almira, On the total outer k-independent domination number of graphs, Mathematics 8 (2020) 194. https://doi.org/10.3390/math8020194
[7] A. Cabrera Martínez, F.A. Hernández-Mira, J.M. Sigarreta Almira and I.G. Yero, On computational and combinatorial properties of the total co-independent domination number of graphs, Comput. J. 62 (2019) 97–108. https://doi.org/10.1093/comjnl/bxy038
[8] A. Cabrera Martínez and J.A. Rodríguez-Velázquez, Total domination in rooted product graphs, Symmetry 12 (2020) 1929. https://doi.org/10.3390/sym12111929
[9] A. Cabrera Martínez and J.A. Rodríguez-Velázquez, Total protection of le-xicographic product graph, Discuss. Math. Graph Theory 42 (2022) 967–984. https://doi.org/10.7151/dmgt.2318
[10] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211–219. https://doi.org/10.1002/net.3230100304
[11] M. El-Zahar, S. Gravier and A. Klobucar, On the total domination number of cross products of graphs, Discrete Math. 308 (2008) 2025–2029. https://doi.org/10.1016/j.disc.2007.04.034
[12] M.A. Henning, A survey of selected recent results on total domination in graphs, Discrete Math. 309 (2009) 32–63. https://doi.org/10.1016/j.disc.2007.12.044
[13] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graph, Graphs Combin. 21 (2005) 63–69. https://doi.org/10.1007/s00373-004-0586-8
[14] M.A. Henning, A. Yeo, Total Domination in Graphs (Springer New York, NY, 2013). https://doi.org/10.1007/978-1-4614-6525-6
[15] P.T. Ho, A note on the total domination number, Util. Math. 77 (2008) 97–100.
[16] F. Kazemnejad, B. Pahlavsay, E. Palezzato and M. Torielli, Total domination number of middle graphs, Electron. J. Graph Theory Appl. (EJGTA) 10 (2022) 275–288. https://doi.org/10.5614/ejgta.2022.10.1.19
[17] J. Krausz, Démonstration nouvelle d'un théorème de Whitney sur les réseaux, Mat. Fiz. Lapok 50 (1943) 75–85.
[18] V. Kulli and D.K. Patwari, On the total edge domination number of a graph, in: Proc. of the Symp. on Graph Theory and Combinatorics, (Centre Math. Sci., Trivandrum, India 1991) 75–81.
[19] J.A. Méndez-Bermúdez, R. Reyes, J.M. Rodríguez and J.M. Sigarreta, Hyperbolicity on graph operators, Symmetry 10 (2018) 360. https://doi.org/10.3390/sym10090360
[20] E. Murugan and J. Paulraj, On the domination number of a graph and its total graph, Discrete Math. Algorithms Appl. 12 (2020) 2050068. https://doi.org/10.1142/S1793830920500688
[21] B. Pahlavsay, E. Palezzato and M. Torielli, Domination for latin square graphs, Graphs Combin. 37 (2021) 971–985. https://doi.org/10.1007/s00373-021-02297-7
[22] D.F. Rall, Total domination in categorical products of graphs, Discuss. Math. Graph Theory 25 (2005) 35–44. https://doi.org/10.7151/dmgt.1257
[23] J.M. Sigarreta, Total domination on some graph operators, Mathematics 9 (2021) 241. https://doi.org/10.3390/math9030241
[24] T. Tamizh Chelvam and T. Asir, Domination in the total graph on Zn, Discrete Math. Algorithms Appl. 03 (2011) 413–421. https://doi.org/10.1142/S1793830911001309
[25] S.K. Vaidya and N.J. Kothari, Some new results on distance k-domination in graphs, Int. J. Comb. 2013 (2013) 795401. https://doi.org/10.1155/2013/795401