Strong subgraph 2-arc-connectivity and arc-strong connectivity of Cartesian product of digraphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 913-931

Voir la notice de l'article provenant de la source Library of Science

Let D=(V,A) be a digraph of order n, S a subset of V of size k and 2≤ k≤ n. A strong subgraph H of D is called an S-strong subgraph if S⊆ V(H). A pair of S-strong subgraphs D_1 and D_2 are said to be arc-disjoint if A(D_1)∩ A(D_2)=∅. Let λ_S(D) be the maximum number of pairwise arc-disjoint S-strong subgraphs in D. The strong subgraph k-arc-connectivity is defined as λ_k(D)=min{λ_S(D)| S⊆ V(D), |S|=k}.The parameter λ_k(D) can be seen as a generalization of classical edge-connectivity of undirected graphs. In this paper, we first obtain a formula for the arc-connectivity of Cartesian product λ(G□ H) of two digraphs G and H generalizing a formula for edge-connectivity of Cartesian product of two undirected graphs obtained by Xu and Yang (2006). Using this formula, we get a new formula for the arc-connectivity of Cartesion product of k≥ 2 copies of a strong digraph G: λ(G^k)=k·min{δ ^+ (G),δ ^- (G) }. Then we study the strong subgraph 2-arc-connectivity of Cartesian product λ_2(G□ H) and prove that min{λ (G) |H|, λ (H)|G|, δ ^+ (G)+ δ ^+ (H), δ ^- (G)+ δ ^- (H) }≥λ_2(G□ H)≥λ_2(G)+λ_2(H)-1. The upper bound for λ_2(G□ H) is sharp and is a simple corollary of the formula for λ(G□ H). The lower bound for λ_2(G□ H) is either sharp or almost sharp i.e., differs by 1 from the sharp bound. We improve the lower bound under an additional condition and prove its sharpness by showing that λ_2(G□ H)≥λ_2(G)+ λ_2(H), where G and H are two strong digraphs such that δ ^+ (H ) gt; λ _2(H). We also obtain exact values for λ_2(G□ H), where G and H are digraphs from some digraph families.
Keywords: connectivity, strong subgraph arc-connectivity, Cartesian product, tree connectivity
@article{DMGT_2024_44_3_a5,
     author = {Dong, Yiling and Gutin, Gregory and Sun, Yuefang},
     title = {Strong subgraph 2-arc-connectivity and arc-strong connectivity of {Cartesian} product of digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {913--931},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a5/}
}
TY  - JOUR
AU  - Dong, Yiling
AU  - Gutin, Gregory
AU  - Sun, Yuefang
TI  - Strong subgraph 2-arc-connectivity and arc-strong connectivity of Cartesian product of digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 913
EP  - 931
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a5/
LA  - en
ID  - DMGT_2024_44_3_a5
ER  - 
%0 Journal Article
%A Dong, Yiling
%A Gutin, Gregory
%A Sun, Yuefang
%T Strong subgraph 2-arc-connectivity and arc-strong connectivity of Cartesian product of digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 913-931
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a5/
%G en
%F DMGT_2024_44_3_a5
Dong, Yiling; Gutin, Gregory; Sun, Yuefang. Strong subgraph 2-arc-connectivity and arc-strong connectivity of Cartesian product of digraphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 913-931. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a5/