@article{DMGT_2024_44_3_a3,
author = {Dong, Changchang and Meng, Jixiang and Liu, Juan},
title = {Dominated pair degree sum conditions of supereulerian digraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {879--891},
year = {2024},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a3/}
}
TY - JOUR AU - Dong, Changchang AU - Meng, Jixiang AU - Liu, Juan TI - Dominated pair degree sum conditions of supereulerian digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 879 EP - 891 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a3/ LA - en ID - DMGT_2024_44_3_a3 ER -
Dong, Changchang; Meng, Jixiang; Liu, Juan. Dominated pair degree sum conditions of supereulerian digraphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 879-891. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a3/
[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Second Ed. (Springer, London, 2009). https://doi.org/10.1007/978-1-84800-998-1
[2] J. Bang-Jensen and A. Maddaloni, Sufficient conditions for a digraph to be supereulerian, J. Graph Theory 79 (2015) 8–20. https://doi.org/10.1002/jgt.21810
[3] F.T. Boesch, C. Suffel and R. Tindell, The spanning subgraphs of eulerian graphs, J. Graph Theory 1 (1977) 79–84. https://doi.org/10.1002/jgt.3190010115
[4] P.A. Catlin, Supereulerian graphs: A survey, J. Graph Theory 16 (1992) 177–196. https://doi.org/10.1002/jgt.3190160209
[5] Z.H. Chen and H.-J. Lai, Reduction techniques for supereulerian graphs and related topics–-a survey, in: Combinatorics and Graph Theory 95, vol.1, K. Tung-Hsin (Ed(s)), (World Sci. Publishing, River Edge 1995) 53–69.
[6] C. Dong, J. Meng and J. Liu, Sufficient Ore type condition for a digraph to be supereulerian, Appl. Math. Comput. 410 (2021) #126470. https://doi.org/10.1016/j.amc.2021.126470
[7] Y. Hong, H.-J. Lai and Q. Liu, Supereulerian digraphs, Discrete Math. 330 (2014) 87–95. https://doi.org/10.1016/j.disc.2014.04.018
[8] Y. Hong, Q. Liu and H.-J. Lai, Ore-type degree condition of supereulerian digraphs, Discrete Math. 339 (2016) 2042–2050. https://doi.org/10.1016/j.disc.2016.03.015
[9] H.-J. Lai, Y. Shao and H. Yan, An update on supereulerian graphs, WSEAS Trans. Math. 12 (2013) 926–940.
[10] W.R. Pulleyblank, A note on graphs spanned by Eulerian graphs, J. Graph Theory 3 (1979) 309–310. https://doi.org/10.1002/jgt.3190030316