@article{DMGT_2024_44_3_a19,
author = {Borowiecki, Piotr and Drgas-Burchardt, Ewa and Sidorowicz, El\.zbieta},
title = {Hypergraph operations preserving sc-greediness},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1217--1241},
year = {2024},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a19/}
}
TY - JOUR AU - Borowiecki, Piotr AU - Drgas-Burchardt, Ewa AU - Sidorowicz, Elżbieta TI - Hypergraph operations preserving sc-greediness JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 1217 EP - 1241 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a19/ LA - en ID - DMGT_2024_44_3_a19 ER -
Borowiecki, Piotr; Drgas-Burchardt, Ewa; Sidorowicz, Elżbieta. Hypergraph operations preserving sc-greediness. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 1217-1241. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a19/
[1] C. Berge, Hypergraphs: Combinatorics of Finite Sets (North-Holland, Amsterdam, 1989).
[2] P. Borowiecki, Computational aspects of greedy partitioning of graphs, J. Comb. Optim. 35 (2018) 641–665. https://doi.org/10.1007/s10878-017-0185-2
[3] P. Borowiecki, On-line partitioning for on-line scheduling with resource conflicts, in: Proc. 7th Int. Conf. on Parallel Processing and Applied Mathematics (PPAM'07), Lecture Notes in Comput. Sci. 4967, R. Wyrzykowski, J. Dongarra, K. Karczewski and J. Wasniewski (Ed(s)), (Springer, Berlin, Heidelberg 2007) 981–990. https://doi.org/10.1007/978-3-540-68111-3_104
[4] P. Borowiecki and E. Sidorowicz, Dynamic F-free coloring of graphs, Graphs Combin. 34 (2018) 457–475. https://doi.org/10.1007/s00373-018-1886-8
[5] P. Borowiecki and E. Sidorowicz, Dynamic coloring of graphs, Fund. Inform. 114 (2012) 105–128. https://doi.org/10.3233/FI-2012-620
[6] C. Brause, A. Kemnitz, M. Marangio, A. Pruchnewski and M. Voigt, Sum choice number of generalized \theta-graphs, Discrete Math. 340 (2017) 2633–2640. https://doi.org/10.1016/j.disc.2016.11.028
[7] R. Diestel, Graph Theory, Grad. Texts in Math. 173 (Springer, Berlin, Heidelberg, 2017). https://doi.org/10.1007/978-3-662-53622-3
[8] E. Drgas-Burchardt and A. Drzystek, Acyclic sum-list-coloring of grids and other classes of graphs, Opuscula Math. 37 (2017) 535–556. https://doi.org/10.7494/OpMath.2017.37.4.535
[9] E. Drgas-Burchardt and A. Drzystek, General and acyclic sum-list-coloring of graphs, Appl. Anal. Discrete Math. 10 (2016) 479–500. https://doi.org/10.2298/AADM161011026D
[10] E. Drgas-Burchardt, A. Drzystek and E. Sidorowicz, Sum-list-coloring of \theta-hypergraphs, Ars Math. Contemp. 22 (2022) #P1.05. https://doi.org/10.26493/1855-3974.2083.e80
[11] E. Drgas-Burchardt and E. Sidorowicz, Sum-list colouring of unions of a hypercycle and a path with at most two vertices in common, Discuss. Math. Graph Theory 40 (2020) 893–917. https://doi.org/10.7151/dmgt.2312
[12] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, in: Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congr. Numer. 26 (1979) 125–157.
[13] B. Heinold, Sum List Coloring and Choosability, PhD Thesis (Lehigh University, 2006).
[14] G. Isaak, Sum list coloring block graphs, Graphs Combin. 20 (2004) 499–506. https://doi.org/10.1007/s00373-004-0564-1
[15] G. Isaak, Sum list coloring 2× n arrays, Electron. J. Combin. 9 (2002) #N8. https://doi.org/10.37236/1669
[16] A. Kemnitz, M. Marangio and M. Voigt, Generalized sum list colorings of graphs, Discuss. Math. Graph Theory 39 (2019) 689–703. https://doi.org/10.7151/dmgt.2174
[17] M. Kubale, Graph Colorings, Contemp. Math. 352 (American Mathematical Society, 2004). https://doi.org/10.1090/conm/352
[18] M. Lastrina, List-Coloring and Sum-List-Coloring Problems on Graphs, PhD Thesis (Iowa State University, 2012). https://doi.org/10.31274/etd-180810-1195
[19] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994) 180–181. https://doi.org/10.1006/jctb.1994.1062