@article{DMGT_2024_44_3_a17,
author = {Thankachy, Maya G. S. and Chandran S.V., Ullas and Tuite, James and Thomas, Elias and Di Stefano, Gabriele and Erskine, Grahame},
title = {On the vertex position number of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1169--1188},
year = {2024},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a17/}
}
TY - JOUR AU - Thankachy, Maya G. S. AU - Chandran S.V., Ullas AU - Tuite, James AU - Thomas, Elias AU - Di Stefano, Gabriele AU - Erskine, Grahame TI - On the vertex position number of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 1169 EP - 1188 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a17/ LA - en ID - DMGT_2024_44_3_a17 ER -
%0 Journal Article %A Thankachy, Maya G. S. %A Chandran S.V., Ullas %A Tuite, James %A Thomas, Elias %A Di Stefano, Gabriele %A Erskine, Grahame %T On the vertex position number of graphs %J Discussiones Mathematicae. Graph Theory %D 2024 %P 1169-1188 %V 44 %N 3 %U http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a17/ %G en %F DMGT_2024_44_3_a17
Thankachy, Maya G. S.; Chandran S.V., Ullas; Tuite, James; Thomas, Elias; Di Stefano, Gabriele; Erskine, Grahame. On the vertex position number of graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 1169-1188. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a17/
[1] B.S. Anand, U. Chandran S.V., M. Changat, S. Klavžar and E.J. Thomas, Characterization of general position sets and its applications to cographs and bipartite graphs., Appl. Math. Comput. 359 (2019) 84–89. https://doi.org/10.1016/j.amc.2019.04.064
[2] T.M. Apostol, Introduction to Analytic Number Theory (Springer-Verlag, New York, 1976). https://doi.org/10.1007/978-1-4757-5579-4
[3] V.G. Boltjansky and I. Gohberg, Results and Problems in Combinatorial Geometry (Cambridge University Press, Cambridge, 1985). https://doi.org/10.1017/CBO9780511569258
[4] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
[5] U. Chandran S.V. and G.J. Parthasarathy, The geodesic irredundant sets in graphs, Int. J. Math. Combin. 4 (2016) 135–143.
[6] G. Chartrand and P. Zhang, Introduction to Graph Theory (Tata McGraw-Hill Pub. Co., New Delhi, 2006).
[7] G. Di Stefano, Mutual visibility in graphs, Appl. Math. Comput. 419 (2022) 126850. https://doi.org/10.1016/j.amc.2021.126850
[8] H.E. Dudeney, Amusements in Mathematics (T. Nelson and Sons, Ltd., London, 1917).
[9] P. Erdős, P.M. Gruber and J. Hammer, Lattice Points (Longman Scientific & Technical, Harlow, 1989).
[10] V. Froese, I. Kanj, A. Nichterlein and R. Niedermeier, Finding points in general position, Internat. J. Comput. Geom. Appl. 27 (2017) 277–296. https://doi.org/10.1142/S021819591750008X
[11] M. Ghorbani, H.R. Maimani, M. Momeni, F.R. Mahid, S. Klavžar and G. Rus, The general position problem on Kneser graphs and on some graph operations, Discuss. Math. Graph Theory 41 (2021) 1199–1213. https://doi.org/10.7151/dmgt.2269
[12] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980). https://doi.org/10.1016/C2013-0-10739-8
[13] J. Hammer, Unsolved Problems Concerning Lattice Points, in: Res. Notes Math. 15 (Publishing Ltd., London, 1977).
[14] G.H. Hardy, E.M. Wright, J. Silverman and A. Wiles, An Introduction to the Theory of Numbers (Oxford University Press, Oxford, 2008).
[15] P. Manuel and S. Klavžar, A general position problem in graph theory, Bull. Aust. Math. Soc. 98 (2018) 177–187. https://doi.org/10.1017/S0004972718000473
[16] P. Manuel and S. Klavžar, The graph theory general position problem on some interconnection networks, Fund. Inform. 163 (2018) 339–350. https://doi.org/10.3233/FI-2018-1748
[17] B. Patkós, On the general position problem on Kneser graphs, Ars Math. Contemp. 18 (2020) 273–280. https://doi.org/10.26493/1855-3974.1957.a0f
[18] M.S. Payne and D.R. Wood, On the general position subset selection problem, SIAM J. Discrete Math. 27 (2013) 1727–1733. https://doi.org/10.1137/120897493
[19] J. O'Rourke, Art Gallery Theorems and Algorithms (Oxford University Press, New York, Oxford, 1987).
[20] J.J. Sylvester, Sur le nombre de fractions ordinaires inégales qu'on peut exprimer en se servant de chiffres qui n’excèdent pas un nombre donné, C.R. Acad. Sci. Paris 96 (1883) 409–413.
[21] E.J. Thomas and U. Chandran S.V., Characterization of classes of graphs with large general position number, AKCE Int. J. Graphs Comb. 17 (2020) 935–939. https://doi.org/10.1016/j.akcej.2019.08.008
[22] J. Tian and K. Xu, The general position number of Cartesian products involving a factor with small diameter, Appl. Math. Comput. 403 (2021) 126206. https://doi.org/10.1016/j.amc.2021.126206
[23] J. Tian, K. Xu and S. Klavžar, The general position number of the Cartesian product of two trees, Bull. Aust. Math. Soc. 104 (2021) 1–10. https://doi.org/10.1017/S0004972720001276