Connectedness and cycle spaces of friends-and-strangers graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 1143-1168

Voir la notice de l'article provenant de la source Library of Science

If X=(V(X),E(X)) and Y=(V(Y),E(Y)) are n-vertex graphs, then their friends-and-strangers graph 𝖥𝖲(X,Y) is the graph whose vertices are the bijections from V(X) to V(Y) in which two bijections σ and σ^' are adjacent if and only if there is an edge {a,b}∈ E(X) such that {σ(a),σ(b)}∈ E(Y) and σ^'=σ∘ (a b), where (a b) is the permutation of V(X) that swaps a and b. We prove general theorems that provide necessary and/or sufficient conditions for 𝖥𝖲(X,Y) to be connected. As a corollary, we obtain a complete characterization of the graphs Y such that 𝖥𝖲(𝖣𝖺𝗇𝖽_k,n,Y) is connected, where 𝖣𝖺𝗇𝖽_k,n is a dandelion graph; this substantially generalizes a theorem of the first author and Kravitz in the case k=3. For specific choices of Y, we characterize the spider graphs X such that 𝖥𝖲(X,Y) is connected. In a different vein, we study the cycle spaces of friends-and-strangers graphs. Naatz proved that if X is a path graph, then the cycle space of 𝖥𝖲(X,Y) is spanned by 4-cycles and 6-cycles; we show that the same statement holds when X is a cycle and Y has domination number at least 3. When X is a cycle and Y has domination number at least 2, our proof sheds light on how walks in 𝖥𝖲(X,Y) behave under certain Coxeter moves.
Keywords: friends-and-strangers graph, spider, dandelion, cycle space, Coxeter move
@article{DMGT_2024_44_3_a16,
     author = {Defant, Colin and Dong, David and Lee, Alan and Wei, Michelle},
     title = {Connectedness and cycle spaces of friends-and-strangers graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1143--1168},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a16/}
}
TY  - JOUR
AU  - Defant, Colin
AU  - Dong, David
AU  - Lee, Alan
AU  - Wei, Michelle
TI  - Connectedness and cycle spaces of friends-and-strangers graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 1143
EP  - 1168
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a16/
LA  - en
ID  - DMGT_2024_44_3_a16
ER  - 
%0 Journal Article
%A Defant, Colin
%A Dong, David
%A Lee, Alan
%A Wei, Michelle
%T Connectedness and cycle spaces of friends-and-strangers graphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 1143-1168
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a16/
%G en
%F DMGT_2024_44_3_a16
Defant, Colin; Dong, David; Lee, Alan; Wei, Michelle. Connectedness and cycle spaces of friends-and-strangers graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 1143-1168. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a16/