@article{DMGT_2024_44_3_a15,
author = {Fan, Yi-Zheng and Yang, Hong-Xia and Zheng, Jian},
title = {High-ordered spectral characterization of unicyclic graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1107--1141},
year = {2024},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a15/}
}
TY - JOUR AU - Fan, Yi-Zheng AU - Yang, Hong-Xia AU - Zheng, Jian TI - High-ordered spectral characterization of unicyclic graphs JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 1107 EP - 1141 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a15/ LA - en ID - DMGT_2024_44_3_a15 ER -
Fan, Yi-Zheng; Yang, Hong-Xia; Zheng, Jian. High-ordered spectral characterization of unicyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 1107-1141. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a15/
[1] T. van Aardenne-Ehrenfest and N.G. de Bruijn, Circuits and trees in oriented linear graphs, in: Classic Papers in Combinatorics, I. Gessel and G.C. Rota (Ed(s)), (Boston, Birkhäuser Boston 1987) 149–163.
[2] S. Bai and L. Lu, A bound on the spectral radius of hypergraphs with e edges, Linear Algebra Appl. 549 (2018) 203–218. https://doi.org/10.1016/j.laa.2018.03.030
[3] K. Cardoso, C. Hoppen and V. Trevisan, The spectrum of a class of uniform hypergraphs, Linear Algebra Appl. 590 (2020) 243–257. https://doi.org/10.1016/j.laa.2019.12.042
[4] K.C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6 (2008) 507–520. https://doi.org/10.4310/CMS.2008.v6.n2.a12
[5] L. Chen, C. Bu and J. Zhou, Spectral moments of hypertrees and their applications, Linear Multilinear Algebra(2021), in press. https://doi.org/10.1080/03081087.2021.1953431
[6] L. Chen, E.R. van Dam and C. Bu, All eigenvalues of the power hypergraph and signed subgraphs of a graph (2022, a manuscript). arXiv: 2209.03709
[7] L. Chen, L. Sun and C. Bu, High-ordered spectral characterizations of graphs (2021, a manuscript). arXiv: 2111.03877
[8] G.J. Clark and J.N. Cooper, A Harary-Sachs theorem for hypergraphs, J. Combin. Theory Ser. B 149 (2021) 1–15. https://doi.org/10.1016/j.jctb.2021.01.002
[9] J.N. Cooper and A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl. 436 (2012) 3268–3292. https://doi.org/10.1016/j.laa.2011.11.018
[10] L. von Collatz and U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Semin. Univ. Hambg. 21 (1957) 63–77. https://doi.org/10.1007/BF02941924
[11] D. Cvetković and P. Rowlinson, Spectra of unicyclic graphs, Graphs Combin. 3 (1987) 7–23. https://doi.org/10.1007/BF01788525
[12] E.R. van Dam and W.H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003) 241–272. https://doi.org/10.1016/S0024-3795(03)00483-X
[13] E.R. van Dam and W.H. Haemers, Developments on spectral characterizations of graphs, Discrete Math. 309 (2009) 576–586. https://doi.org/10.1016/j.disc.2008.08.019
[14] Y.-Z. Fan, Y.-H. Bao and T. Huang, Eigenvariety of nonnegative symmetric weakly irreducible tensors associated with spectral radius and its application to hypergraphs, Linear Algebra Appl. 564 (2019) 72–94. https://doi.org/10.1016/j.laa.2018.11.027
[15] Y.-Z. Fan, T. Huang and Y.-H. Bao, The dimension of eigenvariety of nonnegative tensors associated with spectral radius, Proc. Amer. Math. Soc. 150 (2022) 2287–2299. https://doi.org/10.1090/proc/15781
[16] Y.-Z. Fan, T. Huang, Y.-H. Bao, C. L. Zhuan-Sun and Y.-P. Li, The spectral symmetry of weakly irreducible nonnegative tensors and connected hypergraphs, Trans. Amer. Math. Soc. 372 (2019) 2213–2233. https://doi.org/10.1090/tran/7741
[17] Y.-Z. Fan, M. Li and Y. Wang, The cyclic index of adjacency tensor of generalized power hypergraphs, Discrete Math. 344(5) (2021) 112329. https://doi.org/10.1016/j.disc.2021.112329
[18] Y.-Z. Fan, Y.-Y. Tan, X.-X. Peng and A.-H. Liu, Maximizing spectral radii of uniform hypergraphs with few edges, Discuss. Math. Graph Theory 36 (2016) 845–856. https://doi.org/10.7151/dmgt.1906
[19] Y.-Z. Fan, M.-Y. Tian and M. Li, The stabilizing index and cyclic index of the coalescence and Cartesian product of uniform hypergraphs, J. Combin. Theory Ser. A 185 (2022) 105537. https://doi.org/10.1016/j.jcta.2021.105537
[20] Y.-Z. Fan, Y. Yang, C.-M. She, J. Zheng, Y.-M. Song and H.-X. Yang, The trace and Estrada index of uniform hypergraphs with cut vertices, Linear Algebra Appl. 660 (2023) 89–117. https://doi.org/10.1016/j.laa.2022.12.006
[21] S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl. 438 (2013) 738–749. https://doi.org/10.1016/j.laa.2011.02.042
[22] G. Gao, A. Chang and Y. Hou, Spectral radius on linear r-graphs without expanded Kr+1, SIAM J. Discrete. Math. 36 (2022) 1000–1011. https://doi.org/10.1137/21M1404740
[23] C.D. Godsil and B.D. McKay, A new graph product and its spectrum, Bull. Aust. Math. Soc. 18 (1978) 21–28. https://doi.org/10.1017/S0004972700007760
[24] C.D. Godsil and B.D. McKay, Constructing cospectral graphs, Aequationes Math. 25 (1982) 257–268. https://doi.org/10.1007/BF02189621
[25] Hs.H. Günthard and H. Primas, Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen, Helv. Chim. Acta 39 (1956) 1645–1653. https://doi.org/10.1002/hlca.19560390623
[26] S. Hu, L. Qi and J. Shao, Cored hypergraphs, power hypergraphs and their Laplacian eigenvalues, Linear Algebra Appl. 439 (2013) 2980–2998. https://doi.org/10.1016/j.laa.2013.08.028
[27] P. Keevash, J. Lenz and D. Mubayi, Spectral extremal problems for hypergraphs, SIAM J. Discrete Math. 28 (2014) 1838–1854. https://doi.org/10.1137/130929370
[28] L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adapative Processing (CAMSAP'05), (New Jersey 2005) 129–132.
[29] M. Lepović, Some results on starlike trees and sunlike graphs, J. Appl. Math. Comput. 11 (2003) 109–122. https://doi.org/10.1007/BF02935725
[30] H. Li, J.-Y. Shao and L. Qi, The extremal spectral radii of k-uniform supertrees, J. Comb. Optim. 32 (2016) 741–764. https://doi.org/10.1007/s10878-015-9896-4
[31] L. Liu, L. Kang and E. Shan, On the irregularity of uniform hypergraphs, European J. Comb. 71 (2018) 22–32. https://doi.org/10.1016/j.ejc.2018.02.034
[32] X. Liu, S. Wang, Y. Zhang and X. Yong, On the spectral characterization of some unicyclic graphs, Discrete Math. 311 (2011) 2317–2336. https://doi.org/10.1016/j.disc.2011.05.034
[33] L. Lu and S. Man, Connected hypergraphs with small spectral radius, Linear Algebra Appl. 509 (2016) 206–227. https://doi.org/10.1016/j.laa.2016.07.013
[34] A. Morozov and Sh. Shakirov, Analogue of the identity Log Det = Trace Log for resultants, J. Geom. Phys. 61 (2011) 708–726. https://doi.org/10.1016/j.geomphys.2010.12.001
[35] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302–1324. https://doi.org/10.1016/j.jsc.2005.05.007
[36] A.J. Schwenk, Almost all trees are cospectral, in: New Directions in the Theory of Graphs, F. Harary (Ed(s)), (New York: Academic Press 1973) 275–307.
[37] J.-Y. Shao, L. Qi and S. Hu, Some new trace formulas of tensors with applications in spectral hypergraph theory, Linear Multilinear Algebra 63 (2015) 971–992. https://doi.org/10.1080/03081087.2014.910208
[38] W.T. Tutte and C.A.B. Smith, On unicursal paths in a network of degree 4, Amer. Math. Monthly 48 (1941) 233–237. https://doi.org/10.1080/00029890.1941.11991103
[39] W. Wang, A simple arithmetic criterion for graphs being determined by their generalized spectra, J. Combin. Theory Ser. B 122 (2017) 438–451. https://doi.org/10.1016/j.jctb.2016.07.004
[40] W. Wang and C.-X. Xu, A sufficient condition for a family of graphs being determined by their generalized spectra, European J. Combin. 27 (2006) 826–840. https://doi.org/10.1016/j.ejc.2005.05.004
[41] W. Wang and C.-X. Xu, An excluding algorithm for testing whether a family of graphs are determined by their generalized spectra, Linear Algebra Appl. 418 (2006) 62–74. https://doi.org/10.1016/j.laa.2006.01.016
[42] Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl. 31 (2010) 2517–2530. https://doi.org/10.1137/090778766
[43] Q. Yang and Y. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors II}, SIAM J. Matrix Anal. Appl. 32 (2011) 1236–1250. https://doi.org/10.1137/100813671
[44] Y. Yang and Q. Yang, On some properties of nonnegative weakly irreducible tensors (2011, a manuscript). arXiv: 1111.0713v2
[45] W. Zhang, L. Kang, E. Shan and Y. Bai, The spectra of uniform hypertrees, Linear Algebra Appl. 533 (2017) 84–94. https://doi.org/10.1016/j.laa.2017.07.018
[46] J. Zhou, L. Sun, W. Wang and C. Bu, Some spectral properties of uniform hypergraphs, Electron. J. Combin. 21(4) (2014) #P4.24. https://doi.org/10.37236/4430