@article{DMGT_2024_44_3_a1,
author = {Gutierrez, Marisa and Tondato, Silvia},
title = {On walk domination: weakly toll domination, $l_2$ and $l_3$ domination},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {837--861},
year = {2024},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a1/}
}
TY - JOUR AU - Gutierrez, Marisa AU - Tondato, Silvia TI - On walk domination: weakly toll domination, $l_2$ and $l_3$ domination JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 837 EP - 861 VL - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a1/ LA - en ID - DMGT_2024_44_3_a1 ER -
Gutierrez, Marisa; Tondato, Silvia. On walk domination: weakly toll domination, $l_2$ and $l_3$ domination. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 837-861. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a1/
[1] L. Alcón, A note of path domination, Discuss. Math. Graph Theory 36 (2016) 1021–1034. https://doi.org/10.7151/dmgt.1917
[2] L. Alcón, B. Brešar, T. Gologranc, M. Gutierrez, T. Kraner Šumenjak, I. Peterin and A. Tepeh, Toll convexity, European J. Combin. 46 (2015) 161–175. https://doi.org/10.1016/j.ejc.2015.01.002
[3] F.F. Dragan, F. Nicolai and A. Brandstädt, Convexity and HHD-free graphs, SIAM J. Discrete Math. 12 (1999) 119–135. https://doi.org/10.1137/S0895480195321718
[4] M.C. Dourado, M. Gutierrez, F. Protti and S. Tondato, Weakly toll convexity, submitted for publication.
[5] M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods 7 (1986) 433–444. https://doi.org/10.1137/0607049
[6] M. Gutierrez, F. Protti and S.B. Tondato, Convex geometries over induced paths with bounded length, Discrete Math. 346 (2023) 113133. https://doi.org/10.1016/j.disc.2022.113133
[7] E. Howorka, A characterization of distance-hereditary graphs, Q. J. Math. 28 (1977) 417–420. https://doi.org/10.1093/qmath/28.4.417
[8] C. Lekkerkerker and J. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962) 45–64. https://doi.org/10.4064/fm-51-1-45-64
[9] S. Olariu, Weak bipolarizable graphs, Discrete Math. 74 (1989) 159–171. https://doi.org/10.1016/0012-365X(89)90208-2
[10] I.M. Pelayo, Geodesic Convexity in Graphs (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-8699-2
[11] M. Preissmann, D. de Werra and N.V.R. Mahadev, A note on superbrittle graphs, Discrete Math. 61 (1986) 259–267. https://doi.org/10.1016/0012-365X(86)90097-X
[12] D.B. West, Introduction to Graph Theory, 2nd. Edition (Prentice-Hall, Upper Saddle River, 2000).