Degree sum condition for vertex-disjoint 5-cycles
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 555-574 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

Let n and k be two integers and G a graph with n=5k vertices. Wang proved that if δ(G)≥ 3k, then G contains k vertex disjoint cycles of length 5. In 2018, Chiba and Yamashita asked whether the degree condition can be replaced by degree sum condition. In this paper, we give a positive answer to this question.
Keywords: degree sum conditions, vertex disjoint 5-cycles
@article{DMGT_2024_44_2_a7,
     author = {Wang, Maoqun and Qian, Jianguo},
     title = {Degree sum condition for vertex-disjoint 5-cycles},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {555--574},
     year = {2024},
     volume = {44},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a7/}
}
TY  - JOUR
AU  - Wang, Maoqun
AU  - Qian, Jianguo
TI  - Degree sum condition for vertex-disjoint 5-cycles
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 555
EP  - 574
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a7/
LA  - en
ID  - DMGT_2024_44_2_a7
ER  - 
%0 Journal Article
%A Wang, Maoqun
%A Qian, Jianguo
%T Degree sum condition for vertex-disjoint 5-cycles
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 555-574
%V 44
%N 2
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a7/
%G en
%F DMGT_2024_44_2_a7
Wang, Maoqun; Qian, Jianguo. Degree sum condition for vertex-disjoint 5-cycles. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 555-574. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a7/

[1] S. Abbasi, The Solution of the El-Zahar Problem (PhD Thesis, Rutgers University, 1998).

[2] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423–439. https://doi.org/10.1007/BF01895727

[3] S. Chiba and T. Yamashita, Degree conditions for the existence of vertex-disjoint cycles and paths: A survey, Graphs Combin. 34 (2018) 1–83. https://doi.org/10.1007/s00373-017-1873-5

[4] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3) s3-2 (1952) 69–81. https://doi.org/10.1112/plms/s3-2.1.69

[5] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227–230. https://doi.org/10.1016/0012-365X(84)90050-5

[6] P. Erdős, Some Recent Combinatorial Problems (Technical Report, University of Bielefeld, 1990).

[7] H. Wang, Proof of the Erdős-Faudree conjecture on quadrilaterals, Graphs Combin. 26 (2010) 833–877. https://doi.org/10.1007/s00373-010-0948-3

[8] H. Wang, Disjoint 5-cycles in a graph, Discuss. Math. Graph Theory 32 (2012) 221–242. https://doi.org/10.7151/dmgt.1605