@article{DMGT_2024_44_2_a7,
author = {Wang, Maoqun and Qian, Jianguo},
title = {Degree sum condition for vertex-disjoint 5-cycles},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {555--574},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a7/}
}
Wang, Maoqun; Qian, Jianguo. Degree sum condition for vertex-disjoint 5-cycles. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 555-574. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a7/
[1] S. Abbasi, The Solution of the El-Zahar Problem (PhD Thesis, Rutgers University, 1998).
[2] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar. 14 (1963) 423–439. https://doi.org/10.1007/BF01895727
[3] S. Chiba and T. Yamashita, Degree conditions for the existence of vertex-disjoint cycles and paths: A survey, Graphs Combin. 34 (2018) 1–83. https://doi.org/10.1007/s00373-017-1873-5
[4] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3) s3-2 (1952) 69–81. https://doi.org/10.1112/plms/s3-2.1.69
[5] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984) 227–230. https://doi.org/10.1016/0012-365X(84)90050-5
[6] P. Erdős, Some Recent Combinatorial Problems (Technical Report, University of Bielefeld, 1990).
[7] H. Wang, Proof of the Erdős-Faudree conjecture on quadrilaterals, Graphs Combin. 26 (2010) 833–877. https://doi.org/10.1007/s00373-010-0948-3
[8] H. Wang, Disjoint 5-cycles in a graph, Discuss. Math. Graph Theory 32 (2012) 221–242. https://doi.org/10.7151/dmgt.1605