@article{DMGT_2024_44_2_a6,
author = {Hao, Guoliang and Wei, Shouliu and Sheikholeslami, Seyed Mahmoud and Chen, Xiaodan},
title = {Bounds on the global double {Roman} domination number in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {539--554},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a6/}
}
TY - JOUR AU - Hao, Guoliang AU - Wei, Shouliu AU - Sheikholeslami, Seyed Mahmoud AU - Chen, Xiaodan TI - Bounds on the global double Roman domination number in graphs JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 539 EP - 554 VL - 44 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a6/ LA - en ID - DMGT_2024_44_2_a6 ER -
%0 Journal Article %A Hao, Guoliang %A Wei, Shouliu %A Sheikholeslami, Seyed Mahmoud %A Chen, Xiaodan %T Bounds on the global double Roman domination number in graphs %J Discussiones Mathematicae. Graph Theory %D 2024 %P 539-554 %V 44 %N 2 %U http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a6/ %G en %F DMGT_2024_44_2_a6
Hao, Guoliang; Wei, Shouliu; Sheikholeslami, Seyed Mahmoud; Chen, Xiaodan. Bounds on the global double Roman domination number in graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 539-554. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a6/
[1] H. Abdollahzadeh Ahangar, J. Amjadi, M. Chellali, S. Nazari-Moghaddam and S.M. Sheikholeslami, Trees with double Roman domination number twice the domination number plus two, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019) 1081–1088. https://doi.org/10.1007/s40995-018-0535-7
[2] H. Abdollahzadeh Ahangar, M. Chellali and S.M. Sheikholeslami, On the double Roman domination in graphs, Discrete Appl. Math. 232 (2017) 1–7. https://doi.org/10.1016/j.dam.2017.06.014
[3] J. Amjadi, S.M. Sheikholeslami and L. Volkmann, Global rainbow domination in graphs, Miskolc Math. Notes 17 (2016) 749–759. https://doi.org/10.18514/MMN.2017.1267
[4] M. Atapour, S.M. Sheikholeslami and L. Volkmann, Global Roman domination in trees, Graphs Combin. 31 (2015) 813–825. https://doi.org/10.1007/s00373-014-1415-3
[5] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29. https://doi.org/10.1016/j.dam.2016.03.017
[6] X. Chen, A note on the double Roman domination number of graphs, Czechoslovak Math. J. 70 (2020) 205–212. https://doi.org/10.21136/CMJ.2019.0212-18
[7] W.J. Desormeaux, P.E. Gibson and T.W. Haynes, Bounds on the global domination number, Quaest. Math. 38 (2015) 563–572. https://doi.org/10.2989/16073606.2014.981728
[8] G. Hao and X. Chen, On the global double Roman domination of graphs, Bull. Malays. Math. Sci. Soc. 43 (2020) 3007–3018. https://doi.org/10.1007/s40840-019-00851-4
[9] G. Hao, K. Hu, S. Wei and Z. Xu, Global Italian domination in graphs, Quaest. Math. 42 (2019) 1101–1115. https://doi.org/10.2989/16073606.2018.1506831
[10] G. Hao, L. Volkmann and D.A. Mojdeh, Total double Roman domination in graphs, Commun. Comb. Optim. 5 (2020) 27–39. https://doi.org/10.22049/CCO.2019.26484.1118
[11] N. Jafari Rad and H. Rahbani, Some progress on the double Roman domination in graphs, Discuss. Math. Graph Theory 39 (2019) 41–53. https://doi.org/10.7151/dmgt.2069
[12] P.R.L. Pushpam and S. Padmapriea, Global Roman domination in graphs, Discrete Appl. Math. 200 (2016) 176–185. https://doi.org/10.1016/j.dam.2015.07.014
[13] E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci. 23 (1989) 377–385.
[14] Z. Shao, S.M. Sheikholeslami, S. Nazari-Moghaddam and S. Wang, Global double Roman domination in graphs, J. Discrete Math. Sci. Cryptogr. 22 (2019) 31–44. https://doi.org/10.1080/09720529.2019.1569833
[15] L. Volkmann, Double Roman domination and domatic numbers of graphs, Commun. Comb. Optim. 3 (2018) 71–77. https://doi.org/10.22049/cco.2018.26125.1078
[16] X. Zhang, Z. Li, H. Jiang and Z. Shao, Double Roman domination in trees, Inform. Process. Lett. 134 (2018) 31–34. https://doi.org/10.1016/j.ipl.2018.01.004