@article{DMGT_2024_44_2_a2,
author = {Ma, Dengju and Ma, Mingyuan and Ren, Han},
title = {The decycling number of a planar graph covered by $K_4$-subgraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {459--473},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a2/}
}
TY - JOUR AU - Ma, Dengju AU - Ma, Mingyuan AU - Ren, Han TI - The decycling number of a planar graph covered by $K_4$-subgraphs JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 459 EP - 473 VL - 44 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a2/ LA - en ID - DMGT_2024_44_2_a2 ER -
Ma, Dengju; Ma, Mingyuan; Ren, Han. The decycling number of a planar graph covered by $K_4$-subgraphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 459-473. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a2/
[1] M.O. Albertson and D.M Berman, The acyclic chromatic number, Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. XVII (1976) 51–69.
[2] L.W. Beineke and R.C. Vandell, Decycling graphs, J. Graph Theory 25 (1997) 59–77. https://doi.org/10.1002/(SICI)1097-0118(199705)25:13.0.CO;2-H
[3] J.A. Bondy and U.S.R.Murty, Graph Theory (Springer, 2008).
[4] O.V. Borodin, A proof of Grüngaum's conjecture on the acyclic 5-colorability of planar graphs, Dokl. Akad. Nauk SSSR 231 (1976) 18–20, in Russian.
[5] P. Erdős, M. Saks and V. Sós, Maximum induced trees in graphs, J. Combin. Theory Ser. B 41 (1986) 61–79. https://doi.org/10.1016/0095-8956(86)90028-6
[6] P. Festa, P.M. Pardalos and M.G.C. Reseude, Feedback set problem, in: Handbook of Combinatorial Optimization, Supplement Vol. A, (Kluwer, Dordrecht 1999) 209–258.
[7] K. Hosono, Induced forests in trees and outerplanar graphs, Proc. Fac. Sci. Tokai Univ. 25 (1990) 27–29.
[8] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, R.E. Miller, J.W. Thatcher, J.D. Bohlinger (Ed(s)), (The IBM Research Symposia Series Springer, Boston, MA 1972) 85–103. https://doi.org/10.1007/978-1-4684-2001-2_9
[9] J.P. Liu and C. Zhao, A new bound on the feedback vertex sets in cubic graphs, Discrete Math. 184 (1996) 119–131. https://doi.org/10.1016/0012-365X(94)00268-N
[10] S.D. Long and H. Ren, The decycling number and maximum genus of cubic graphs, J. Graph Theory 88 (2018) 375–384. https://doi.org/10.1002/jgt.22218
[11] D.A. Pike and Y. Zou, Decycling Cartesian products of two cycles, SIAM J. Discrete Math. 19 (2005) 651–663. https://doi.org/10.1137/S089548010444016X
[12] N. Punnim, The decycling number of regular graphs, Thai J. Math. 4 (2006) 145–161.
[13] H. Ren, C. Yang and T.-X. Zhao, A new formula for the decycling number of regular graphs, Discrete Math. 340 (2017) 3020–3031. https://doi.org/10.1016/j.disc.2017.07.011
[14] A.T. White, Graphs, Groups and Surfaces (North-Holland, 1973).
[15] H. Whitney, Two-isomorphic graphs, Trans. Amer. Math. Soc. 34 (1932) 339–362. https://doi.org/10.1090/S0002-9947-1932-1501641-2