@article{DMGT_2024_44_2_a13,
author = {de Wet, Johan P. and Dunbar, Jean E. and Frick, Marietjie and Oellermann, Ortrud R.},
title = {On the {Strong} {Path} {Partition} {Conjecture}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {691--715},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a13/}
}
TY - JOUR AU - de Wet, Johan P. AU - Dunbar, Jean E. AU - Frick, Marietjie AU - Oellermann, Ortrud R. TI - On the Strong Path Partition Conjecture JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 691 EP - 715 VL - 44 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a13/ LA - en ID - DMGT_2024_44_2_a13 ER -
%0 Journal Article %A de Wet, Johan P. %A Dunbar, Jean E. %A Frick, Marietjie %A Oellermann, Ortrud R. %T On the Strong Path Partition Conjecture %J Discussiones Mathematicae. Graph Theory %D 2024 %P 691-715 %V 44 %N 2 %U http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a13/ %G en %F DMGT_2024_44_2_a13
de Wet, Johan P.; Dunbar, Jean E.; Frick, Marietjie; Oellermann, Ortrud R. On the Strong Path Partition Conjecture. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 691-715. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a13/
[1] R.E.L. Aldred and C. Thomassen, Graphs with not all possible path-kernels, Discrete Math. 285 (2004) 297–300. https://doi.org/10.1016/j.disc.2004.02.012
[2] J.A. Bondy, Handbook of Combinatorics}, Eds. R.L. Graham, M. Grötschel and L. Lovász, The MIT Press, Cambridge, MA I (1995) 49.
[3] I. Broere, P. Hajnal, and P. Mihók, Partition problems and kernels of graphs, Discuss. Math. Graph Theory 17 (1997) 311–313. https://doi.org/10.7151/dmgt.1058
[4] F. Bullock, J.E. Dunbar and M. Frick, Path partitions and Pn-free sets, Discrete Math. 489 (2004) 145–155. https://doi.org/10.1016/j.disc.2004.07.012
[5] J.E. Dunbar and M. Frick, Path kernels and partitions, J. Combin. Math. Combin. Comput. 31 (1999) 137–149.
[6] J.E. Dunbar and M. Frick, The Path Partition Conjecture is true for claw-free graphs, Discrete Math. 307 (2007) 1285–1290. https://doi.org/10.1016/j.disc.2005.11.065
[7] J.E. Dunbar and M. Frick, The Path Partition Conjecture, in: Graph Theory: Favourite Conjectures and Open Problems, R. Gera, T.W. Haynes and S. Hedetniemi (Ed(s)), (Springer 2018).
[8] M. Frick and I. Schiermeyer, An asymptotic result on the path partition conjecture, Electron. J. Combin. 12 (2005) #R48. https://doi.org/10.37236/1945
[9] M. Frick and C. Whitehead, A new approach to the Path Partition Conjecture, Util. Math. 99 (2006) 195–206.
[10] P. Katrenič and G. Semanišin, A note on the Path Kernel Conjecture, Discrete Math. 309 (2009) 2551–2554. https://doi.org/10.1016/j.disc.2008.05.002
[11] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest directed paths in digraphs, Graphs and Other Combinatorial Topics, Teubner-Texte Math. Prague (1982) 59 (1983) 173–177.
[12] L.S. Melnikov and I.V. Petrenko, On path kernels and partitions in nondirected graphs, Diskretn. Anal. Issled. Oper. 9 (2002) 21–35.
[13] L.S. Melnikov and I.V. Petrenko, Path kernels and partitions of graphs with small cycle length, in: Methods and Tools of Program Construction and Optimization, V.N. Kasyanov (Ed(s)), (ISI SB Russian Academy of Science, Novosibirsk 200) 145–160.
[14] J. Vronka, Vertex Sets of Graphs with Prescribed Properties}, PhD Thesis (P.J. Safárik University, Košice, 1986).