@article{DMGT_2024_44_2_a12,
author = {Benmedjdoub, Brahim and Sopena, \'Eric},
title = {Strong incidence colouring of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {663--689},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a12/}
}
Benmedjdoub, Brahim; Sopena, Éric. Strong incidence colouring of graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 663-689. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a12/
[1] B. Benmedjdoub, I. Bouchemakh and É. Sopena, Incidence choosability of graphs, Discrete Appl. Math. 265 (2019) 40–55. https://doi.org/10.1016/j.dam.2019.04.027
[2] R.A. Brualdi and J.J. Quinn Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51–58. https://doi.org/10.1016/0012-365X(93)90286-3
[3] P. Gregor, B. Lužar and R. Soták, Note on incidence chromatic number of subquartic graphs, J. Comb. Optim. 34 (2017) 174–181. https://doi.org/10.1007/s10878-016-0072-2
[4] P. Gregor, B. Lužar and R. Soták, On incidence coloring conjecture in Cartesian products of graphs, Discrete Appl. Math. 213 (2016) 93–100. https://doi.org/10.1016/j.dam.2016.04.030
[5] R. Halin, Studies on minimally n-connected graphs, in: Proc. Combinatorial Mathematics and its Aplications, Oxford 1969 (Academic Press, London, 1971) 129–136.
[6] M. Hosseini Dolama, É. Sopena and X. Zhu, Incidence coloring of k-denegerated graphs, Discrete Math. 283 (2004) 121–128. https://doi.org/10.1016/j.disc.2004.01.015
[7] M. Maydanskyi, The incidence coloring conjecture for graphs of maximum degree 3, Discrete Math. 292 (2005) 131–141. https://doi.org/10.1016/j.disc.2005.02.003
[8] A. Prowse and D.R. Woodall, Choosability of powers of circuits, Graphs Combin. 19 (2003) 137–144. https://doi.org/10.1007/s00373-002-0486-8
[9] W.C. Shiu, P.C.B. Lam and W.K. Tam, On strong chromatic index of Halin graph, J. Combin. Math. Combin. Comput. 57 (2006) 211–222.
[10] É. Sopena and J. Wu, The incidence chromatic number of toroidal grids, Discuss. Math. Graph Theory 33 (2013) 315–327. https://doi.org/10.7151/dmgt.1663
[11] S.-D. Wang, D.-L. Chen and S.-C. Pang, The incidence coloring number of Halin graphs and outerplanar graphs, Discrete Math. 256 (2002) 397–405. https://doi.org/10.1016/S0012-365X(01)00302-8
[12] J. Wu, Some results on the incidence coloring number of graphs, Discrete Math. 309 (2009) 3866–3870. https://doi.org/10.1016/j.disc.2008.10.027