@article{DMGT_2024_44_2_a10,
author = {Casselgren, Carl Johan and Petros, Fikre},
title = {Edge precoloring extension of trees {II}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {613--637},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a10/}
}
Casselgren, Carl Johan; Petros, Fikre. Edge precoloring extension of trees II. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 613-637. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a10/
[1] M.O. Albertson and E.H. Moore, Extending graph colorings using no extra colors, Discrete Math. 234 (2001) 125–132. https://doi.org/10.1016/S0012-365X(00)00376-9
[2] L.D. Andersen, Completing partial Latin squares, Mat.-Fys. Medd. Danske Vid. Selsk. 41 (1985) 25–64.
[3] L.D. Andersen and A.J.W. Hilton, Thanks Evans!}, Proc. Lond. Math. Soc. 47 (1983) 507–522. https://doi.org/10.1112/plms/s3-47.3.507
[4] C.J. Casselgren, P. Johansson and K. Markström, Avoiding and extending partial edge colorings of hypercubes, Graphs Combin. 38 (2022) #79. https://doi.org/10.1007/s00373-022-02485-z
[5] C.J. Casselgren, K. Markström and L.A. Pham, Edge precoloring extension of hypercubes, J. Graph Theory 95 (2020) 410–444. https://doi.org/10.1002/jgt.22561
[6] C.J. Casselgren and F.B. Petros, Edge precoloring extension of trees, Australas. J. Combin. 81 (2021) 233–244.
[7] M. Cropper, A. Gyárfás and J. Lehel, Edge list multicoloring trees: An extension of Hall's theorem, J. Graph Theory 42 (2003) 246–255. https://doi.org/10.1002/jgt.10093
[8] K. Edwards, A. Girão, J. van den Heuvel, R.J. Kang, G.J. Puleo and J.-S. Serini, Extension from precoloured sets of edges, Electron. J. Combin. 25 (2018) #P3.1. https://doi.org/10.37236/6303
[9] T. Evans, Embedding incomplete latin squares, Amer. Math. Monthly 67 (1960) 958–961.
[10] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153–158. https://doi.org/10.1006/jctb.1995.1011
[11] A. Girão and R.J. Kang, Precolouring extension of Vizing's theorem, J. Graph Theory 92 (2019) 255–260. https://doi.org/10.1002/jgt.22451
[12] R. Häggkvist, A solution to the Evans conjecture for Latin squares of large size, Colloq. Math. Soc. Janos Bolyai 18 (1978) 405–513.
[13] J. Kuhl and T. Denley, Constrained completion of partial latin squares, Discrete Math. 312 (2012) 1251–1256. https://doi.org/10.1016/j.disc.2011.10.025
[14] O. Marcotte and P. Seymour, Extending an edge-coloring, J. Graph Theory 14 (1990) 565–573. https://doi.org/10.1002/jgt.3190140508
[15] B. Smetanuik, A new construction on Latin squares. I.} A proof of the Evans conjecture, Ars Combin. 11 (1981) 155–172.