@article{DMGT_2024_44_1_a8,
author = {Doki, Masayoshi and Egawa, Yoshimi and Matsumoto, Naoki},
title = {Graph grabbing game on graphs with forbidden subgraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {171--197},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a8/}
}
TY - JOUR AU - Doki, Masayoshi AU - Egawa, Yoshimi AU - Matsumoto, Naoki TI - Graph grabbing game on graphs with forbidden subgraphs JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 171 EP - 197 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a8/ LA - en ID - DMGT_2024_44_1_a8 ER -
Doki, Masayoshi; Egawa, Yoshimi; Matsumoto, Naoki. Graph grabbing game on graphs with forbidden subgraphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 171-197. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a8/
[1] S. Chaplick, P. Micek, T. Ueckerdt and V. Wiechert, A note on concurrent graph sharing games, Integers 16 (2016) #G1.
[2] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215–228. https://doi.org/10.1016/0012-365X(73)90138-6
[3] J. Cibulka, J. Kynčl, V. Mészáros, R. Stolař and P. Valtr, Graph sharing games: Complexity and connectivity, Theoret. Comput. Sci. 494 (2013) 49–62. https://doi.org/10.1016/j.tcs.2012.12.029
[4] J. Cibulka, R. Stolař, J. Kynčl, V. Mészáros and P. Valtr, Solution to Peter Winkler's pizza problem, in: Fete of Combinatorics and Computer Science, Bolyai Soc. Math. Stud. 20 ({Springer, Berlin, 2010}) 63–93. https://doi.org/10.1007/978-3-642-13580-4_4
[5] R. Diestel, Graph Theory, Fifth Edition, in: Grad. Texts in Math. 173 (Springer, Berlin, Heidelberg, 2017). https://doi.org/10.1007/978-3-662-53622-3
[6] D. Duffus, R.J. Gould and M.S. Jacobson, Forbidden subgraphs and the Hamiltonian theme, in: The Theory and Applications of Graphs (Wiley, New York, 1981) 297–316.
[7] Y. Egawa, H. Enomoto and N. Matsumoto, The graph grabbing game on Km,n-trees, Discrete Math. 341 (2018) 1555–1560. https://doi.org/10.1016/j.disc.2018.02.023
[8] S. Eoh and J. Choi, The graph grabbing game on {0,1}-weighted graphs, Results Appl. Math. 3 (2019) 100028. https://doi.org/10.1016/j.rinam.2019.100028
[9] A. Gagol, P. Micek and B. Walczak, Graph sharing game and the structure of weighted graphs with a forbidden subdivision, J. Graph Theory 85 (2017) 22–50. https://doi.org/10.1002/jgt.22045
[10] P. van't Hof and D. Paulusma, A new characterization of P6-free graphs, Discrete Appl. Math. 158 (2010) 731–740. https://doi.org/10.1016/j.dam.2008.08.025
[11] A. Kelmans, On Hamiltonicity of {claw, net}-free graphs, Discrete Math. 306 (2006) 2755–2761. https://doi.org/10.1016/j.disc.2006.04.022
[12] K. Knauer, P. Micek and T. Ueckerdt, How to eat 4/9 of a pizza, Discrete Math. 311 (2011) 1635–1645. https://doi.org/10.1016/j.disc.2011.03.015
[13] J. Liu and H. Zhou, Dominating subgraphs in graphs with some forbidden structures, Discrete Math. 135 (1994) 163–168. https://doi.org/10.1016/0012-365X(93)E0111-G
[14] M.M. Matthews and D.P. Sumner, Hamiltonian results in K1,3-free graphs, J. Graph Theory 8 (1984) 139–146. https://doi.org/10.1002/jgt.3190080116
[15] P. Micek and B. Walczak, A graph-grabbing game, Combin. Probab. Comput. 20 (2011) 623–629. https://doi.org/10.1017/S0963548311000071
[16] P. Micek and B. Walczak, Parity in graph sharing games, Discrete Math. 312 (2012) 1788–1795. https://doi.org/10.1016/j.disc.2012.01.037
[17] D.E. Seacrest and T. Seacrest, Grabbing the gold, Discrete Math. 312 (2012) 1804–1806. https://doi.org/10.1016/j.disc.2012.01.010
[18] F.B. Shepherd, Hamiltonicity in claw-free graphs, J. Combin. Theory Ser. B 53 (1991) 173–194. https://doi.org/10.1016/0095-8956(91)90074-T
[19] P.M. Winkler, Mathematical Puzzles: A Connoisseur's Collection (A K Peters/CRC Press, New York, 2003). https://doi.org/10.1201/b16493