@article{DMGT_2024_44_1_a7,
author = {Eckels, Emily and Gy\H{o}ri, Ervin and Liu, Junsheng and Nasir, Sohaib},
title = {Set-sequential labelings of odd trees},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {151--170},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a7/}
}
TY - JOUR AU - Eckels, Emily AU - Győri, Ervin AU - Liu, Junsheng AU - Nasir, Sohaib TI - Set-sequential labelings of odd trees JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 151 EP - 170 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a7/ LA - en ID - DMGT_2024_44_1_a7 ER -
Eckels, Emily; Győri, Ervin; Liu, Junsheng; Nasir, Sohaib. Set-sequential labelings of odd trees. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 151-170. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a7/
[1] B.D. Acharya and S.M. Hegde, Set sequential graphs, Nat. Acad. Sci. Lett. 8 (1985) 387–390.
[2] K. Abhishek, Set-valued graphs II}, J. Fuzzy Set Valued Anal. 2013 (2013) 1–16.
[3] K. Abhishek and G.K. Agustine, Set-valued graphs, J. Fuzzy Set Valued Anal. 2012 (2012) 1–17.
[4] P.N. Balister, E. Győri and R.H. Schelp, Coloring vertices and edges of a graph by nonempty subsets of a set, European J. Combin. 32 (2011) 533–537. https://doi.org/10.1016/j.ejc.2010.11.008
[5] L. Golowich and C. Kim, New classes of set-sequential trees, Discrete Math. 343 (2020) 111741. https://doi.org/10.1016/j.disc.2019.111741
[6] S.M. Hegde, Set colorings of graphs, European J. Combin. 30 (2009) 986–995. https://doi.org/10.1016/j.ejc.2008.06.005
[7] A.R. Mehta, G.R. Vijayakumar and S. Arumugam, A note on ternary sequences of strings of 0 and 1, AKCE Int. J. Graphs Comb. 5 (2008) 175–179. https://doi.org/10.1080/09728600.2008.12088862