Edge intersection hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 101-126

Voir la notice de l'article provenant de la source Library of Science

If ℋ=(V, ℰ ) is a hypergraph, its edge intersection hypergraph EI( ℋ )=(V, ℰ^EI ) has the edge set ℰ^EI={e_1 ∩ e_2 | e_1, e_2 ∈ℰ ∧ e_1 ≠ e_2 ∧ |e_1 ∩ e_2 |≥2}. Besides investigating several structural properties of edge intersection hypergraphs, we prove that all trees but seven exceptional ones are edge intersection hypergraphs of 3-uniform hypergraphs. Using the so-called clique-fusion, as a conclusion we obtain that nearly all cacti are edge intersection hypergraphs of 3-uniform hypergraphs, too.
Keywords: edge intersection hypergraph, tree, cactus
@article{DMGT_2024_44_1_a5,
     author = {Sonntag, Martin and Teichert, Hanns-Martin},
     title = {Edge intersection hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {101--126},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a5/}
}
TY  - JOUR
AU  - Sonntag, Martin
AU  - Teichert, Hanns-Martin
TI  - Edge intersection hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 101
EP  - 126
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a5/
LA  - en
ID  - DMGT_2024_44_1_a5
ER  - 
%0 Journal Article
%A Sonntag, Martin
%A Teichert, Hanns-Martin
%T Edge intersection hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 101-126
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a5/
%G en
%F DMGT_2024_44_1_a5
Sonntag, Martin; Teichert, Hanns-Martin. Edge intersection hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 101-126. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a5/