Edge intersection hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 101-126 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

If ℋ=(V, ℰ ) is a hypergraph, its edge intersection hypergraph EI( ℋ )=(V, ℰ^EI ) has the edge set ℰ^EI={e_1 ∩ e_2 | e_1, e_2 ∈ℰ ∧ e_1 ≠ e_2 ∧ |e_1 ∩ e_2 |≥2}. Besides investigating several structural properties of edge intersection hypergraphs, we prove that all trees but seven exceptional ones are edge intersection hypergraphs of 3-uniform hypergraphs. Using the so-called clique-fusion, as a conclusion we obtain that nearly all cacti are edge intersection hypergraphs of 3-uniform hypergraphs, too.
Keywords: edge intersection hypergraph, tree, cactus
@article{DMGT_2024_44_1_a5,
     author = {Sonntag, Martin and Teichert, Hanns-Martin},
     title = {Edge intersection hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {101--126},
     year = {2024},
     volume = {44},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a5/}
}
TY  - JOUR
AU  - Sonntag, Martin
AU  - Teichert, Hanns-Martin
TI  - Edge intersection hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 101
EP  - 126
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a5/
LA  - en
ID  - DMGT_2024_44_1_a5
ER  - 
%0 Journal Article
%A Sonntag, Martin
%A Teichert, Hanns-Martin
%T Edge intersection hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 101-126
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a5/
%G en
%F DMGT_2024_44_1_a5
Sonntag, Martin; Teichert, Hanns-Martin. Edge intersection hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 101-126. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a5/

[1] C. Berge, Graphs and Hypergraphs (North Holland, Amsterdam, 1973).

[2] T. Biedl and M. Stern, On edge-intersection graphs of k-bend paths in grids, Discrete Math. Theor. Comput. Sci. 12 (2010) 1–12. https://doi.org/10.46298/dmtcs.482

[3] K. Cameron, S. Chaplick and C.T. Hoang, Edge intersection graphs of L-shaped paths in grids, Discrete Appl. Math. 210 (2016) 185–194. https://doi.org/10.1016/j.dam.2015.01.039

[4] M.C. Golumbic and R.E. Jamison, The edge intersection graphs of paths in a tree, J. Combin. Theory Ser. B 38 (1985) 8–22. https://doi.org/10.1016/0095-8956(85)90088-7

[5] R.N. Naik, S.B. Rao, S.S. Shrikhande and N.M. Singhi, Intersection graphs of k-uniform linear hypergraphs, European J. Combin. 3 (1982) 159–172. https://doi.org/10.1016/S0195-6698(82)80029-2

[6] R.C. Read and R.J. Wilson, An Atlas of Graphs (Oxford University Press, New York, 1998).

[7] G. Robers, EI-Hypergraphen und deren Eigenschaften, Bachelor Thesis (University of Lübeck, 2017).

[8] P.V. Skums, S.V. Suzdal and R.I. Tyshkevich, Edge intersection graphs of linear 3-uniform hypergraphs, Discrete Math. 309 (2009) 3500–3517. https://doi.org/10.1016/j.disc.2007.12.082

[9] M. Sonntag and H.-M. Teichert, Cycles as edge intersection hypergraphs, (2019). arXiv: 1902.00396

[10] Wolfram Research, Inc., Mathematica (2010), Version 8.0, Champaign, IL.