Minimal graphs with disjoint dominating and total dominating sets
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 47-74 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

A graph G is a DTDP-graph if it has a pair (D,T) of disjoint sets of vertices of G such that D is a dominating set and T is a total dominating set of G. Such graphs were studied in a number of research papers. In this paper we study further properties of DTDP-graphs and, in particular, we characterize minimal DTDP-graphs without loops.
Keywords: domination, total domination
@article{DMGT_2024_44_1_a3,
     author = {Henning, Michael A. and Topp, Jerzy},
     title = {Minimal graphs with disjoint dominating and total dominating sets},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {47--74},
     year = {2024},
     volume = {44},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a3/}
}
TY  - JOUR
AU  - Henning, Michael A.
AU  - Topp, Jerzy
TI  - Minimal graphs with disjoint dominating and total dominating sets
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 47
EP  - 74
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a3/
LA  - en
ID  - DMGT_2024_44_1_a3
ER  - 
%0 Journal Article
%A Henning, Michael A.
%A Topp, Jerzy
%T Minimal graphs with disjoint dominating and total dominating sets
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 47-74
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a3/
%G en
%F DMGT_2024_44_1_a3
Henning, Michael A.; Topp, Jerzy. Minimal graphs with disjoint dominating and total dominating sets. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 47-74. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a3/

[1] I. Broere, M. Dorfling, W. Goddard, J.H. Hattingh, M.A. Henning and E. Ungerer, Augmenting trees to have two disjoint total dominating sets, Bull. Inst. Combin. Appl. 42 (2004) 12–18.

[2] P. Delgado, W.J. Desormeaux and T.W. Haynes, Partitioning the vertices of a graph into two total dominating sets, Quaest. Math. 39 (2016) 863–873. https://doi.org/10.2989/16073606.2016.1188862

[3] W.J. Desormeaux, T.W. Haynes and M.A. Henning, Partitioning the vertices of a cubic graph into two total dominating sets, Discrete Appl. Math. 223 (2017) 52–63. https://doi.org/10.1016/j.dam.2017.01.032

[4] M. Dorfling, W. Goddard, J.H. Hattingh and M.A. Henning, Augmenting a graph of minimum degree 2 to have two disjoint total dominating sets, Discrete Math. 300 (2005) 82–90. https://doi.org/10.1016/j.disc.2005.06.020

[5] T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Eds), Topics in Domination in Graphs (Dev. Math. 64, Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-51117-3

[6] T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Eds), Structures of Domination in Graphs (Dev. Math. 66, Springer, Cham, 2021). https://doi.org/10.1007/978-3-030-58892-2

[7] P. Heggernes and J.A. Telle, Partitioning graphs into generalized dominating sets, Nordic J. Comput. 5 (1998) 128–142.

[8] M.A. Henning, C. Löwenstein and D. Rautenbach, Partitioning a graph into a dominating set, a total dominating set, and something else, Discuss. Math. Graph Theory 30 (2010) 563–574. https://doi.org/10.7151/dmgt.1514

[9] M.A. Henning, C. Löwenstein, D. Rautenbach and J. Southey, Disjoint dominating and total dominating sets in graphs, Discrete Appl. Math. 158 (2010) 1615–1623. https://doi.org/10.1016/j.dam.2010.06.004

[10] M.A. Henning and A.J. Marcon, Semitotal domination in graphs: Partition and algorithmic results, Util. Math. 106 (2018) 165–184.

[11] M.A. Henning and I. Peterin, A characterization of graphs with disjoint total dominating sets, Ars Math. Contemp. 16 (2019) 359–375. https://doi.org/10.26493/1855-3974.1525.7f3

[12] M.A. Henning and J. Southey, A note on graphs with disjoint dominating and total dominating sets, Ars Combin. 89 (2008) 159–162.

[13] M.A. Henning and J. Southey, A characterization of graphs with disjoint dominating and total dominating sets, Quaest. Math. 32 (2009) 119–129. https://doi.org/10.2989/QM.2009.32.1.10.712

[14] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monogr. Math., Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-6525-6

[15] E.M. Kiunisala and F.P. Jamil, On pairs of disjoint dominating sets in a graph, Int. J. Math. Anal. 10 (2016) 623–637. https://doi.org/10.12988/ijma.2016.6343

[16] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, Amer. Math. Soc., Providence, 1962).

[17] J. Southey and M.A. Henning, Dominating and total dominating partitions in cubic graphs, Cent. Eur. J. Math. 9 (2011) 699–708. https://doi.org/10.2478/s11533-011-0014-2