@article{DMGT_2024_44_1_a18,
author = {Tian, Tao and Broersma, Hajo and Xiong, Liming},
title = {Edge degree conditions for dominating and spanning closed trails},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {363--381},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a18/}
}
TY - JOUR AU - Tian, Tao AU - Broersma, Hajo AU - Xiong, Liming TI - Edge degree conditions for dominating and spanning closed trails JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 363 EP - 381 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a18/ LA - en ID - DMGT_2024_44_1_a18 ER -
Tian, Tao; Broersma, Hajo; Xiong, Liming. Edge degree conditions for dominating and spanning closed trails. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 363-381. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a18/
[1] A. Benhocine, L. Clark, N. Köhler and H.J. Veldman, On circuits and pancyclic line graphs, J. Graph Theory 10 (1986) 411–425. https://doi.org/10.1002/jgt.3190100317
[2] J.A. Bondy and U.S.R. Murty, Graph Theory, in: Grad. Texts in Math. 244 (Springer-Verlag, London, 2008).
[3] R.A. Brualdi and R.F. Shanny, Hamiltonian line graphs, J. Graph Theory 5 (1981) 307–314. https://doi.org/10.1002/jgt.3190050312
[4] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29–44. https://doi.org/10.1002/jgt.3190120105
[5] P.A. Catlin, Z.-Y. Han and H.-J Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81–91. https://doi.org/10.1016/S0012-365X(95)00149-Q
[6] W.-G. Chen, Z.-H. Chen and M. Lu, Properties of Catlin's reduced graphs and supereulerian graphs, Bull. Inst. Combin. Appl. 75 (2015) 47–63.
[7] Z.-H. Chen, A degree condition for spanning eulerian subgraphs, J. Graph Theory 17 (1993) 5–21. https://doi.org/10.1002/jgt.3190170103
[8] Z.-H. Chen, Hamiltonicity and degrees of adjacent vertices in claw-free graphs, J. Graph Theory 86 (2017) 193–212. https://doi.org/10.1002/jgt.22120
[9] Z.-H. Chen and H.-J. Lai, Collapsible graphs and matchings, J. Graph Theory 17 (1993) 597–605. https://doi.org/10.1002/jgt.3190170506
[10] Z.-H. Chen and H.-J. Lai, Supereulerian graphs and the Petersen graph \uppercase\expandafter{\romannumeral2}}, Ars Combin. 48 (1998) 271–282.
[11] Z.-H. Chen, H.-J. Lai and M. Zhang, Spanning trails with variations of Chvátal–Erdős conditions, Discrete Math. 340 (2017) 243–251. https://doi.org/10.1016/j.disc.2016.08.002
[12] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3) 2 (1952) 69–81. https://doi.org/10.1112/plms/s3-2.1.69
[13] R.J. Faudree, E. Flandrin and Z. Ryjáček, Claw-free graphs–-A survey, Discrete Math. 164 (1997) 87–147. https://doi.org/10.1016/S0012-365X(96)00045-3
[14] R.J. Gould, Recent advances on the Hamiltonian problem: survey \uppercase\expandafter{\romannumeral3}}, Graphs Combin. 30 (2014) 1–46. https://doi.org/10.1007/s00373-013-1377-x
[15] F. Harary and C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701–709. https://doi.org/10.4153/CMB-1965-051-3
[16] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55. https://doi.org/10.2307/2308928
[17] Y. Shao, Claw-free graphs and line graphs, Ph.D. Thesis (Morgantown, West Virginia University, 2005). https://doi.org/10.33915/etd.2251
[18] T. Tian and L. Xiong, Traceability on 2-connected line graphs, Appl. Math. Comput. 321 (2018) 463–471. https://doi.org/10.1016/j.amc.2017.10.043
[19] T. Tian and L. Xiong, 2-connected Hamiltonian claw-free graphs involving degree sum of adjacent vertices, Discuss. Math. Graph Theory 40 (2020) 85–106. https://doi.org/10.7151/dmgt.2125
[20] H.J. Veldman, On dominating and spanning circuits in graphs, Discrete Math. 124 (1994) 229–239. https://doi.org/10.1016/0012-365X(92)00063-W