@article{DMGT_2024_44_1_a17,
author = {Jendrol', Stanislav},
title = {2-nearly {Platonic} graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {351--362},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a17/}
}
Jendrol', Stanislav. 2-nearly Platonic graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 351-362. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a17/
[1] P.R. Cromwell, Polyhedra (Cambridge University Press, 1997).
[2] D.W. Crowe, Nearly regular polyhedra with two exceptional faces, in: The Many Facets of Graph Theory, Proc. Conf. Western Mich. Univ., Kalamazoo, MI, 1968, (Springer, Berlin 1969) 63–76.
[3] M. Deza and M. Dutour Sikirić, Geometry of Chemical Graphs: Polycycles and Two-faced Maps (Cambridge University Press, 2008). https://doi.org/10.1017/CBO9780511721311
[4] M. Deza, M. Dutour Sikirić and M. Shtogrin, Fullerene-like spheres with faces of negative curvature, in: Diamond and Related Nanostructures, Chapter 13, M.V. Diudea and C.L. Nagy (Ed(s)), (Springer 2013). https://doi.org/10.1007/978-94-007-6371-5_13
[5] R. Diestel, Graph Theory (Springer-Verlag, Berlin, Heidelberg, 2005). https://doi.org/10.1007/978-3-662-53622-3
[6] D. Froncek and J. Qiu, Balanced 3-nearly Platonic graphs, Bull. Inst. Combin. Appl. 86 (2019) 34–63.
[7] D. Froncek, M.R. Khorsadi, S.R. Musawi and J. Qiu, {A note on nearly Platonic graphs with connectivity one}, Electron. J. Graph Theory Appl. (EJGTA) 9 (2021) 195–205. https://doi.org/10.5614/ejgta.2021.9.1.17
[8] D. Froncek, M.R. Khorsadi, S.R. Musawi and J. Qiu, 2-nearly Platonic graphs are unique, manuscript, March 2021.
[9] B. Grünbaum, Convex Polytopes, in: Grad. Texts in Math. 221 (Springer-Verlag, New York, 2003). https://doi.org/10.1007/978-1-4613-0019-9
[10] M. Horňák, A theorem on nonexistence of a certain type of nearly regular cell-decomposition of the sphere, Časopis Pěst. Mat. 103 (1978) 333–338. https://doi.org/10.21136/CPM.1978.117991
[11] M. Horňák and E. Jucovič, Nearly regular-cell decomposition of orientable 2-manifold with at most two exceptional cells, Math. Slovaca 27 (1977) 73–89.
[12] S. Jendroľ, On the non-existence of certain nearly regular planar maps with two exceptional faces, Mat. Čas. 25 (1975) 159–164.
[13] S. Jendroľ, On the face-vectors of trivalent convex polyhedra, Math. Slovaca 33 (1983) 165–180.
[14] S. Jendroľ, On face-vectors of 5-valent convex 3-polytopes, J. Geom. 50 (1994) 100–110. https://doi.org/10.1007/BF01222667
[15] S. Jendroľ \ and R. Soták, On the cyclic coloring conjecture, Discrete Math. 344 (2021) 112204. https://doi.org/10.1016/j.disc.2020.112204
[16] E. Jucovič, On the face-vector of a 4-valent 3-polytope, Studia Sci. Math. Hungar. 72 (1973) 53–57.
[17] W. Keith, D. Froncek and D. Kreher, A note on nearly Platonic graphs, Australas. J. Combin. 70 (2018) 86–103.
[18] W. Keith, D. Froncek and D. Kreher, Corrigendum to: A note on nearly Platonic graphs, Australas. J. Combin. 72 (2018) 163.
[19] J. Malkevitch, Properties of Planar Graphs with Uniform Vertex and Face Structure, in: Men. Amer. Math. Soc. 99 (American Mathematical Society, Providence, R.I., 1970). https://doi.org/10.1090/memo/0099
[20] E. Schulte, Chiral polyhedra in oridinary space I}, Discrete Comput. Geom. 32 (2004) 55–99. https://doi.org/10.1007/s00454-004-0843-x