2-nearly Platonic graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 351-362

Voir la notice de l'article provenant de la source Library of Science

A 2-nearly Platonic graph of type (k, d) is a k-regular plane graph with f faces, f - 2 of which are of size d and the remaining two are of sizes d_1, d_2, both different from d. Such a graph is called balanced if d_1 = d_2. We show that all connected 2-nearly Platonic graphs are balanced. This proves a recent conjecture by Keith, Froncek, and Kreher. We also show that any 2-nearly Platonic graph belongs to one of 15 well defined infinite classes. The latter states more precisely the statement of Deza, Dutour Sikirič, and Shtogrin from 2013, and of Froncek, Khorsandi, Musawi, and Qui from 2021 that there are only 14 such classes. Moreover, our short proof provides a complete characterization of all 2-nearly Platonic graphs.
Keywords: plane graph, Platonic solid, almost Platonic graph
@article{DMGT_2024_44_1_a17,
     author = {Jendrol', Stanislav},
     title = {2-nearly {Platonic} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {351--362},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a17/}
}
TY  - JOUR
AU  - Jendrol', Stanislav
TI  - 2-nearly Platonic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 351
EP  - 362
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a17/
LA  - en
ID  - DMGT_2024_44_1_a17
ER  - 
%0 Journal Article
%A Jendrol', Stanislav
%T 2-nearly Platonic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 351-362
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a17/
%G en
%F DMGT_2024_44_1_a17
Jendrol', Stanislav. 2-nearly Platonic graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 351-362. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a17/