Chorded $k$-pancyclic and weakly $k$-pancyclic graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 337-350 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

As natural relaxations of pancyclic graphs, we say a graph G is k-pancyclic if G contains cycles of each length from k to |V(G)| and G is weakly pancyclic if it contains cycles of all lengths from the girth to the circumference of G, while G is weakly k-pancyclic if it contains cycles of all lengths from k to the circumference of G. A cycle C is chorded if there is an edge between two vertices of the cycle that is not an edge of the cycle. Combining these ideas, a graph is chorded pancyclic if it contains chorded cycles of each length from 4 to the circumference of the graph, while G is chorded k-pancyclic if there is a chorded cycle of each length from k to |V(G)|. Further, G is chorded weakly k-pancyclic if there is a chorded cycle of each length from k to the circumference of the graph. We consider conditions for graphs to be chorded weakly k-pancyclic and chorded k-pancyclic.
Keywords: cycle, chord, pancyclic, weakly pancyclic
@article{DMGT_2024_44_1_a16,
     author = {Cream, Megan and Gould, Ronald J.},
     title = {Chorded $k$-pancyclic and weakly $k$-pancyclic graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {337--350},
     year = {2024},
     volume = {44},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a16/}
}
TY  - JOUR
AU  - Cream, Megan
AU  - Gould, Ronald J.
TI  - Chorded $k$-pancyclic and weakly $k$-pancyclic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 337
EP  - 350
VL  - 44
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a16/
LA  - en
ID  - DMGT_2024_44_1_a16
ER  - 
%0 Journal Article
%A Cream, Megan
%A Gould, Ronald J.
%T Chorded $k$-pancyclic and weakly $k$-pancyclic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 337-350
%V 44
%N 1
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a16/
%G en
%F DMGT_2024_44_1_a16
Cream, Megan; Gould, Ronald J. Chorded $k$-pancyclic and weakly $k$-pancyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 337-350. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a16/

[1] D. Amar, J. Fournier and A. Germa, Pancyclism in Chvátal-Erdős graphs, Graphs Combin. 7 (1991) 101–112. https://doi.org/10.1007/BF01788136

[2] J.A. Bondy, Pancyclic graphs I}, J. Combin. Theory Ser. B 11 (1971) 80–84. https://doi.org/10.1016/0095-8956(71)90016-5

[3] S. Brandt, Sufficient Conditions for Graphs to Contain All Subgraphs of a Given Type, Ph.D. Thesis (Freie Universitat Berlin, 1994).

[4] S. Brandt, The Mathematics of Paul Erdős (Springer, 1996).

[5] S. Brandt, R. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph Theory 27 (1998) 141–176. https://doi.org/10.1002/(SICI)1097-0118(199803)27:33.0.CO;2-O

[6] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111–113. https://doi.org/10.1016/0012-365X(72)90079-9

[7] G. Chen, R.J. Gould, X. Gu and A. Saito, Cycles with a chord in dense graphs, Discrete Math. 341 (2018) 2131–2141. https://doi.org/10.1016/j.disc.2018.04.016

[8] M. Cream, R.J. Faudree, R.J. Gould and K. Hirohata, Chorded cycles, Graphs Combin. 32 (2016) 2295–2313. https://doi.org/10.1007/s00373-016-1729-4

[9] M. Cream, R.J. Gould and K. Hirohata, A note on extending Bondy's meta-conjecture, Australas. J. Combin. 67 (2017) 463–469.

[10] M. Cream, R.J. Gould and K. Hirohata, Extending vertex and edge pancyclic graphs, Graphs Combin. 34 (2018) 1691–1711. https://doi.org/10.1007/s00373-018-1960-2

[11] R.J. Gould, Graph Theory (Dover Publications Inc., 2012).

[12] D. Lou, The Chvátal-Erdős condition for cycles in triangle-free graphs, Discrete Math. 152 (1996) 253–257. https://doi.org/10.1016/0012-365X(96)80461-4

[13] L. Pósa, Problem no. 127, Mat. Lapok 12 (1961) 254, in Hungarian.