@article{DMGT_2024_44_1_a16,
author = {Cream, Megan and Gould, Ronald J.},
title = {Chorded $k$-pancyclic and weakly $k$-pancyclic graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {337--350},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a16/}
}
Cream, Megan; Gould, Ronald J. Chorded $k$-pancyclic and weakly $k$-pancyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 337-350. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a16/
[1] D. Amar, J. Fournier and A. Germa, Pancyclism in Chvátal-Erdős graphs, Graphs Combin. 7 (1991) 101–112. https://doi.org/10.1007/BF01788136
[2] J.A. Bondy, Pancyclic graphs I}, J. Combin. Theory Ser. B 11 (1971) 80–84. https://doi.org/10.1016/0095-8956(71)90016-5
[3] S. Brandt, Sufficient Conditions for Graphs to Contain All Subgraphs of a Given Type, Ph.D. Thesis (Freie Universitat Berlin, 1994).
[4] S. Brandt, The Mathematics of Paul Erdős (Springer, 1996).
[5] S. Brandt, R. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph Theory 27 (1998) 141–176. https://doi.org/10.1002/(SICI)1097-0118(199803)27:33.0.CO;2-O
[6] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111–113. https://doi.org/10.1016/0012-365X(72)90079-9
[7] G. Chen, R.J. Gould, X. Gu and A. Saito, Cycles with a chord in dense graphs, Discrete Math. 341 (2018) 2131–2141. https://doi.org/10.1016/j.disc.2018.04.016
[8] M. Cream, R.J. Faudree, R.J. Gould and K. Hirohata, Chorded cycles, Graphs Combin. 32 (2016) 2295–2313. https://doi.org/10.1007/s00373-016-1729-4
[9] M. Cream, R.J. Gould and K. Hirohata, A note on extending Bondy's meta-conjecture, Australas. J. Combin. 67 (2017) 463–469.
[10] M. Cream, R.J. Gould and K. Hirohata, Extending vertex and edge pancyclic graphs, Graphs Combin. 34 (2018) 1691–1711. https://doi.org/10.1007/s00373-018-1960-2
[11] R.J. Gould, Graph Theory (Dover Publications Inc., 2012).
[12] D. Lou, The Chvátal-Erdős condition for cycles in triangle-free graphs, Discrete Math. 152 (1996) 253–257. https://doi.org/10.1016/0012-365X(96)80461-4
[13] L. Pósa, Problem no. 127, Mat. Lapok 12 (1961) 254, in Hungarian.