Chorded $k$-pancyclic and weakly $k$-pancyclic graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 337-350

Voir la notice de l'article provenant de la source Library of Science

As natural relaxations of pancyclic graphs, we say a graph G is k-pancyclic if G contains cycles of each length from k to |V(G)| and G is weakly pancyclic if it contains cycles of all lengths from the girth to the circumference of G, while G is weakly k-pancyclic if it contains cycles of all lengths from k to the circumference of G. A cycle C is chorded if there is an edge between two vertices of the cycle that is not an edge of the cycle. Combining these ideas, a graph is chorded pancyclic if it contains chorded cycles of each length from 4 to the circumference of the graph, while G is chorded k-pancyclic if there is a chorded cycle of each length from k to |V(G)|. Further, G is chorded weakly k-pancyclic if there is a chorded cycle of each length from k to the circumference of the graph. We consider conditions for graphs to be chorded weakly k-pancyclic and chorded k-pancyclic.
Keywords: cycle, chord, pancyclic, weakly pancyclic
@article{DMGT_2024_44_1_a16,
     author = {Cream, Megan and Gould, Ronald J.},
     title = {Chorded $k$-pancyclic and weakly $k$-pancyclic graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {337--350},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a16/}
}
TY  - JOUR
AU  - Cream, Megan
AU  - Gould, Ronald J.
TI  - Chorded $k$-pancyclic and weakly $k$-pancyclic graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 337
EP  - 350
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a16/
LA  - en
ID  - DMGT_2024_44_1_a16
ER  - 
%0 Journal Article
%A Cream, Megan
%A Gould, Ronald J.
%T Chorded $k$-pancyclic and weakly $k$-pancyclic graphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 337-350
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a16/
%G en
%F DMGT_2024_44_1_a16
Cream, Megan; Gould, Ronald J. Chorded $k$-pancyclic and weakly $k$-pancyclic graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 337-350. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a16/