@article{DMGT_2024_44_1_a15,
author = {Verma, Shaily and Panda, B. S.},
title = {Adjacent vertex distinguishing total coloring of the corona product of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {317--335},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a15/}
}
TY - JOUR AU - Verma, Shaily AU - Panda, B. S. TI - Adjacent vertex distinguishing total coloring of the corona product of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 317 EP - 335 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a15/ LA - en ID - DMGT_2024_44_1_a15 ER -
Verma, Shaily; Panda, B. S. Adjacent vertex distinguishing total coloring of the corona product of graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 317-335. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a15/
[1] M. Behzad, Graphs and Their Chromatic Numbers, Ph.D. Thesis (Michigan State University, Dept. of Mathematics, 1965).
[2] X. Chen, On the adjacent vertex distinguishing total coloring numbers of graphs with \Delta=3, Discrete Math. 308 (2008) 4003–4007. https://doi.org/10.1016/j.disc.2007.07.091
[3] X. Cheng, G. Wang and J. Wu, The adjacent vertex distinguishing total chromatic numbers of planar graphs with \Delta = 10, J. Comb. Optim. 34 (2017) 383–397. https://doi.org/10.1007/s10878-016-9995-x
[4] J. Hu, G. Wang, J. Wu, D. Yang and X. Yu, Adjacent vertex distinguishing total coloring of planar graphs with maximum degree 9, Discrete Math. 342 (2019) 1392–1402. https://doi.org/10.1016/j.disc.2019.01.024
[5] D. Huang and W. Wang, Adjacent vertex distinguishing total coloring of planar graphs with large maximum degree, Sci. Sin. Math. 42 (2012) 151–164. https://doi.org/10.1360/012011-359
[6] J. Hulgan, Concise proofs for adjacent vertex-distinguishing total colorings, Discrete Math. 309 (2009) 2548–2550. https://doi.org/10.1016/j.disc.2008.06.002
[7] J. Huo, W. Wang and Y. Wang, A characterization for the neighbor-distinguishing total chromatic number of planar graphs with \Delta=13, Discrete Math. 341 (2018) 3044–3056. https://doi.org/10.1016/j.disc.2018.07.011
[8] Y. Lu, J. Li, R. Luo and Z. Miao, Adjacent vertex distinguishing total coloring of graphs with maximum degree 4, Discrete Math. 340 (2017) 119–123. https://doi.org/10.1016/j.disc.2016.07.011
[9] A.G. Luiz, C.N. Campos and C.P. de Mello, AVD-total-chromatic number of some families of graphs with \Delta(G)=3, Discrete Appl. Math. 217 (2017) 628–638. https://doi.org/10.1016/j.dam.2016.09.041
[10] C.J.H. McDiarmid and A. Sánchez-Arroyo, Total colouring regular bipartite graphs is NP-hard, Discrete Math. 124 (1994) 155–162. https://doi.org/10.1016/0012-365X(92)00058-Y
[11] S. Mohan, J. Geetha and K. Somusundaram, Total coloring of the corona product of two graphs, Australas. J. Combin. 68 (2017) 15–22.
[12] A. Papaioannou and C. Raftopoulou, On the AVDTC of 4-regular graphs, Discrete Math. 330 (2014) 20–40. https://doi.org/10.1016/j.disc.2014.03.019
[13] R. Vignesh, J. Geetha and K. Somusundaram, Total coloring conjecture for vertex, edge and neighborhood corona products of graphs, Discrete Math. Algorithms Appl. 11 (2019) 1950014. https://doi.org/10.1142/S1793830919500149
[14] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25–30.
[15] H. Wang, On the adjacent vertex-distinguishing total chromatic numbers of the graphs with \Delta(G)=3, J. Comb. Optim. 14 (2007) 87–109. https://doi.org/10.1007/s10878-006-9038-0
[16] W. Wang and D. Huang, The adjacent vertex distinguishing total coloring of planar graphs, J. Comb. Optim. 27 (2014) 379–396. https://doi.org/10.1007/s10878-012-9527-2
[17] W. Wang, J. Huo, D. Huang and Y. Wang, Planar graphs with \Delta = 9 are neighbor-distinguishing totally 12-colorable, J. Comb. Optim. 37 (2019) 1071–1089. https://doi.org/10.1007/s10878-018-0334-2
[18] D.B. West, Introduction to Graph Theory, 2 Ed. (Prentice Hall, Upper Saddle River, 2001).
[19] D. Yang, L. Sun, X. Yu, J. Wu and S. Zhou, Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10, Appl. Math. Comput. 314 (2017) 456–468. https://doi.org/10.1016/j.amc.2017.06.002
[20] Z. Zhang, X. Chen, J. Li, B. Yao, X. Lu and J. Wang, On adjacent-vertex-distinguishing total coloring of graphs, Sci. China Ser. A 48 (2005) 289–299. https://doi.org/10.1360/03ys0207