@article{DMGT_2024_44_1_a11,
author = {Wang, Ruixia and Wu, Linxin},
title = {Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {245--267},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/}
}
TY - JOUR AU - Wang, Ruixia AU - Wu, Linxin TI - Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 245 EP - 267 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/ LA - en ID - DMGT_2024_44_1_a11 ER -
%0 Journal Article %A Wang, Ruixia %A Wu, Linxin %T Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions %J Discussiones Mathematicae. Graph Theory %D 2024 %P 245-267 %V 44 %N 1 %U http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/ %G en %F DMGT_2024_44_1_a11
Wang, Ruixia; Wu, Linxin. Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 245-267. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/
[1] J. Adamus and L. Adamus, A degree condition for cycles of maximum length in bipartite digraphs, Discrete Math. 312 (2012) 1117–1122. https://doi.org/10.1016/j.disc.2011.11.032
[2] J. Adamus, L. Adamus, and A. Yeo, On the Meyniel condition for hamiltonicity in bipartite digraphs, Discrete Math. Theor. Comput. Sci. 16 (2014) 293–302. https://doi.org/10.46298/dmtcs.1264
[3] J. Adamus, A degree sum condition for hamiltonicity in balanced bipartite digraphs, Graphs Combin. 33 (2017) 43–51. https://doi.org/10.1007/s00373-016-1751-6
[4] J. Adamus, A Meyniel-type condition for bipancyclicity in balanced bipartitie digraphs, Graphs Combin. 34 (2018) 703–709. https://doi.org/10.1007/s00373-018-1907-7
[5] J. Adamus, On dominating pair degree conditions for hamiltonicity in balanced bipartite digraphs, Discrete Math. 344 (2021) 112240. https://doi.org/10.1016/j.disc.2020.112240
[6] D. Amar and Y. Manoussakis, Cycles and paths of many lengths in bipartite digraphs, J. Combin. Theory Ser. B 50 (1990) 254–264. https://doi.org/10.1016/0095-8956(90)90081-A
[7] J. Bang-Jensen, G. Gutin and H. Li, Sufficient conditions for a digraph to be Hamiltonian, J. Graph Theory 22(2) (1996) 181–187. https://doi.org/10.1002/(SICI)1097-0118(199606)22:23.0.CO;2-J
[8] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2000). https://doi.org/10.1007/978-1-4471-3886-0
[9] S.Kh. Darbinyan, Sufficient conditions for a balanced bipartite digraph to be even pancyclic, Discrete Appl. Math. 238 (2018) 70–76. https://doi.org/10.1016/j.dam.2017.12.013
[10] S.Kh. Darbinyan, Sufficient conditions for Hamiltonian cycles in bipartite digraphs, Discrete Appl. Math. 258 (2019) 87–96. https://doi.org/10.1016/j.dam.2018.11.024
[11] G. Gutin, Criterion for complete bipartite digraphs to be Hamiltonian, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 1 (1984) 109–110, in Russian.
[12] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33–38. https://doi.org/10.1007/BF02122681
[13] M. Meszka, New sufficient conditions for bipancyclicity of balanced bipartite digraphs, Discrete Math. 341 (2018) 3237–3240. https://doi.org/10.1016/j.disc.2018.08.004
[14] M. Meyniel, Une condition suffisante d'existence d'un circuit hamiltonien dans un graphe orienté, J. Combin. Theory Ser. B 14 (1973) 137–147. https://doi.org/10.1016/0095-8956(73)90057-9
[15] C. Thomassen, An Ore-type condition implying a digraph to be pancyclic, Discrete Math. 19 (1977) 85–92. https://doi.org/10.1016/0012-365X(77)90122-4
[16] R. Wang, J. Chang and L. Wu, A dominated pair condition for a digraph to be hamiltonian, Discrete Math. 343 (2020) 111794. https://doi.org/10.1016/j.disc.2019.111794
[17] R. Wang and L. Wu, A dominating pair condition for a balanced bipartite digraph to be hamiltonian, Australas. J. Combin. 77 (2020) 136–143.
[18] R. Wang, Extremal digraphs on Woodall-type condition for hamiltonian cycles in balanced bipartite digraphs, J. Graph Theory 97 (2021) 194–207. https://doi.org/10.1002/jgt.22649
[19] R. Wang, A note on dominating pair degree condition for hamiltonian cycles in balanced bipartite digraphs, Graphs Combin.} (2021), accepted.
[20] R. Wang, A sufficient condition for a balanced bipartite digraph to be hamiltonian, Discrete Math. Theor. Comput. Sci. 19(3) (2017) #11. https://doi.org/https://doi.org/10.23638/DMTCS-19-3-11
[21] D.R. Woodall, Sufficient conditions for circuits in graphs, Proc. Lond. Math. Soc. (3) 24 (1972) 739–755. https://doi.org/10.1112/plms/s3-24.4.739