Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 245-267
Voir la notice de l'article provenant de la source Library of Science
In 2017, Adamus proved that a strong balanced bipartite digraph of order 2a with a≥ 3 is hamiltonian, if d(u)+d(v)≥ 3a for every pair of dominating or dominated vertices {u,v}. In this paper, we characterize all non-hamiltonian bipartite digraphs when d(u)+d(v)≥ 3a-1 for every pair of dominating or dominated vertices {u,v}, consisting of one infinite family and four exceptional bipartite digraphs of order six. Using this result, we also prove that a strong balanced bipartite digraph of order 2a with a≥ 4 contains all cycles of lengths 2, 4, …, 2a-2 except for a single bipartite digraph, and also contains a hamiltonian path, if d(u)+d(v)≥ 3a-1 for every pair of dominating or dominated vertices {u, v}. The bounds for 3a-1 in two results are sharp. This partly settles the following problem when l=a-1 proposed by Adamus [A Meyniel-type condition for bipancyclicity in balanced bipartitie digraphs, Graphs Combin. 34 (2018) 703–709]. Whether for every 1≤ l lt; a there is a k(l), k(l)≥ 1, such that every strong balanced bipartite digraph of order 2a contains cycles of lengths 2, 4, …, 2l, whenever d(u)+d(v)≥ 3a-k(l) for every pair of dominating or dominated vertices {u, v}.
Keywords:
bipartite digraph, degree sum, bipancyclicity, hamiltonian cycle
@article{DMGT_2024_44_1_a11,
author = {Wang, Ruixia and Wu, Linxin},
title = {Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {245--267},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/}
}
TY - JOUR AU - Wang, Ruixia AU - Wu, Linxin TI - Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 245 EP - 267 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/ LA - en ID - DMGT_2024_44_1_a11 ER -
%0 Journal Article %A Wang, Ruixia %A Wu, Linxin %T Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions %J Discussiones Mathematicae. Graph Theory %D 2024 %P 245-267 %V 44 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/ %G en %F DMGT_2024_44_1_a11
Wang, Ruixia; Wu, Linxin. Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 245-267. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/