Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 245-267

Voir la notice de l'article provenant de la source Library of Science

In 2017, Adamus proved that a strong balanced bipartite digraph of order 2a with a≥ 3 is hamiltonian, if d(u)+d(v)≥ 3a for every pair of dominating or dominated vertices {u,v}. In this paper, we characterize all non-hamiltonian bipartite digraphs when d(u)+d(v)≥ 3a-1 for every pair of dominating or dominated vertices {u,v}, consisting of one infinite family and four exceptional bipartite digraphs of order six. Using this result, we also prove that a strong balanced bipartite digraph of order 2a with a≥ 4 contains all cycles of lengths 2, 4, …, 2a-2 except for a single bipartite digraph, and also contains a hamiltonian path, if d(u)+d(v)≥ 3a-1 for every pair of dominating or dominated vertices {u, v}. The bounds for 3a-1 in two results are sharp. This partly settles the following problem when l=a-1 proposed by Adamus [A Meyniel-type condition for bipancyclicity in balanced bipartitie digraphs, Graphs Combin. 34 (2018) 703–709]. Whether for every 1≤ l lt; a there is a k(l), k(l)≥ 1, such that every strong balanced bipartite digraph of order 2a contains cycles of lengths 2, 4, …, 2l, whenever d(u)+d(v)≥ 3a-k(l) for every pair of dominating or dominated vertices {u, v}.
Keywords: bipartite digraph, degree sum, bipancyclicity, hamiltonian cycle
@article{DMGT_2024_44_1_a11,
     author = {Wang, Ruixia and Wu, Linxin},
     title = {Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {245--267},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/}
}
TY  - JOUR
AU  - Wang, Ruixia
AU  - Wu, Linxin
TI  - Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 245
EP  - 267
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/
LA  - en
ID  - DMGT_2024_44_1_a11
ER  - 
%0 Journal Article
%A Wang, Ruixia
%A Wu, Linxin
%T Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 245-267
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/
%G en
%F DMGT_2024_44_1_a11
Wang, Ruixia; Wu, Linxin. Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 245-267. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a11/