@article{DMGT_2024_44_1_a10,
author = {Bensmail, Julien},
title = {On a graph labelling conjecture involving coloured labels},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {231--244},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a10/}
}
Bensmail, Julien. On a graph labelling conjecture involving coloured labels. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 231-244. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a10/
[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal and B.A. Reed, Vertex colouring edge partitions, J. Combin. Theory Ser. B 94 (2005) 237–244. https://doi.org/10.1016/j.jctb.2005.01.001
[2] O. Baudon, J. Bensmail, T. Davot, H. Hocquard, J. Przybyło, M. Senhaji, É. Sopena and M. Woźniak, A general decomposition theory for the 1-2-3 Conjecture and locally irregular decompositions, Discrete Math. Theor. Comput. Sci. 21 (2019) #2. https://doi.org/10.23638/DMTCS-21-1-2
[3] O. Baudon, J. Bensmail, H. Hocquard, M. Senhaji and É. Sopena, Edge weights and vertex colours: Minimizing sum count, Discrete Appl. Math. 270 (2019) 13–24. https://doi.org/10.1016/j.dam.2019.07.019
[4] O. Baudon, J. Bensmail, J. Przybyło and M. Woźniak, On decomposing regular graphs into locally irregular subgraphs, European J. Combin. 49 (2015) 90–104. https://doi.org/10.1016/j.ejc.2015.02.031
[5] J. Bensmail, A 1-2-3-4 result for the 1-2-3 Conjecture in 5-regular graphs, Discrete Appl. Math. 257 (2019) 31–39. https://doi.org/10.1016/j.dam.2018.10.008
[6] J. Bensmail, H. Hocquard, D. Lajou and É. Sopena, Further evidence towards the multiplicative 1-2-3 Conjecture, Discrete Appl. Math. 307 (2022) 135–144. https://doi.org/https://dx.doi.org/10.1016/j.dam.2021.10.014
[7] J. Bensmail and J. Przybyło, Decomposability of graphs into subgraphs fulfilling the 1-2-3 Conjecture, Discrete Appl. Math. 268 (2019) 1–9. https://doi.org/10.1016/j.dam.2019.04.011
[8] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 197–210.
[9] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2017) #DS6, http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6/versions.
[10] Y. Gao, G. Wang and J. Wu, A relaxed case on 1-2-3 Conjecture, Graphs Combin. 32 (2016) 1415–1421. https://doi.org/10.1007/s00373-015-1656-9
[11] M. Kalkowski, A note on the 1,2-Conjecture, Electron. J. Combin., in press.
[12] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: Towards the 1-2-3 Conjecture, J. Combin. Theory Ser. B 100 (2010) 347–349. https://doi.org/10.1016/j.jctb.2009.06.002
[13] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 1319–1321. https://doi.org/10.1137/090774112
[14] M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colours, J. Combin. Theory Ser. B 91 (2004) 151–157. https://doi.org/10.1016/j.jctb.2003.12.001
[15] J. Przybyło, A note on the weak (2,2)-Conjecture, Discrete Math. 342 (2019) 498–504. https://doi.org/10.1016/j.disc.2018.10.033
[16] J. Przybyło, The 1-2-3 Conjecture almost holds for regular graphs, J. Combin. Theory Ser. B 147 (2021) 183–200. https://doi.org/10.1016/j.jctb.2020.03.005
[17] B. Seamone, The 1-2-3 Conjecture and related problems: a survey (2012). http://arxiv.org/abs/1211.5122
[18] B. Vučković, Multi-set neighbor distinguishing 3-edge coloring, Discrete Math. 341 (2018) 820–824. https://doi.org/10.1016/j.disc.2017.12.001