@article{DMGT_2024_44_1_a1,
author = {Miklavi\v{c}, \v{S}tefko and \v{S}parl, Primoz},
title = {On distance magic labelings of {Hamming} graphs and folded hypercubes},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {17--33},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a1/}
}
TY - JOUR AU - Miklavič, Štefko AU - Šparl, Primoz TI - On distance magic labelings of Hamming graphs and folded hypercubes JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 17 EP - 33 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a1/ LA - en ID - DMGT_2024_44_1_a1 ER -
Miklavič, Štefko; Šparl, Primoz. On distance magic labelings of Hamming graphs and folded hypercubes. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 17-33. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a1/
[1] S. Arumugam, D. Froncek and N. Kamatchi, Distance magic graphs –- A survey, J. Indones. Math. Soc., Special Edition (2011) 11–26. https://doi.org/10.22342/jims.0.0.15.11-26
[2] S. Arumugam, N. Kamatchi and G.R. Vijayakumar, On the uniqueness of D-vertex magic constant, Discuss. Math. Graph Theory 34 (2014) 279–286. https://doi.org/10.7151/dmgt.1728
[3] D. Bini, G.M. Del Corso, G. Manzini and L. Margara, Inversion of circulant matrices over \mathbb{Z}m, Math. Comp. 70 (2001) 1169–1182. https://doi.org/10.1090/S0025-5718-00-01235-7
[4] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs (Springer-Verlag, Berlin, 1989). https://doi.org/10.1007/978-3-642-74341-2
[5] S. Cichacz, Distance magic graphs G × Cn, Discrete Appl. Math. 177 (2014) 80–87. https://doi.org/10.1016/j.dam.2014.05.044
[6] S. Cichacz and D. Froncek, Distance magic circulant graphs, Discrete Math. 339 (2016) 84–94. https://doi.org/10.1016/j.disc.2015.07.002
[7] S. Cichacz, D. Froncek, E. Krop and C. Raridan, Distance magic Cartesian products of graphs, Discuss. Math. Graph Theory 36 (2016) 299–308. https://doi.org/10.7151/dmgt.1852
[8] S. Cichacz and A. Gőrlich, Constant sum partition of sets of integers and distance magic graphs, Discuss. Math. Graph Theory 38 (2018) 97–106. https://doi.org/10.7151/dmgt.1991
[9] D. Froncek, A note on incomplete regular torunaments with handicap two of order n ≡ 8 (mod 16), Opuscula Math. 37 (2017) 557–566. https://doi.org/10.7494/OpMath.2017.37.4.557
[10] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin.} (2017), #DS6. http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6/versions
[11] A. Godinho, T. Singh and S. Arumugam, The distance magic index of a graph, Discuss. Math. Graph Theory 38 (2018) 135–142. https://doi.org/10.7151/dmgt.1998
[12] P. Gregor and P. Kovár, Distance magic labelings of hypercubes, Electron. Notes Discrete Math. 40 (2013) 145–149. https://doi.org/10.1016/j.endm.2013.05.027
[13] R. Hill, A First Course in Coding Theory (Oxford University Press, Oxford, 1993).
[14] S. Lang, Algebra, in: Grad. Texts in Math. 211 (Springer-Verlag, New York, 2002). https://doi.org/10.1007/978-1-4613-0041-0
[15] Š. Miklavič and P. Šparl, Classification of tetravalent distance magic circulant graphs, Discrete Math. 344 (2021) 112557. https://doi.org/10.1016/j.disc.2021.112557
[16] S.B. Rao, Sigma graphs –- A survey, in: Labelings of Discrete Structures and Applications, B.D. Acharya, S. Arumugam and A. Rosa (Ed(s)), (Narosa Publishing House, New Delhi 2008) 135–140.
[17] P. Savický, Examples of distance magic labelings of the 6-dimensional hypercube. arXiv: 2102.08212
[18] Y. Tian, L. Hou, B. Hou and S. Gao, D-magic labelings of the folded n-cube, Discrete Math. 344 (2021) 112520. https://doi.org/10.1016/j.disc.2021.112520