@article{DMGT_2023_43_4_a8,
author = {Bogdanowicz, Zbigniew R.},
title = {On $q$-connected chordal graphs with minimum number of spanning trees},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1019--1032},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a8/}
}
Bogdanowicz, Zbigniew R. On $q$-connected chordal graphs with minimum number of spanning trees. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1019-1032. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a8/
[1] F.T. Boesch, A. Satyanarayana and C.L. Suffel, Least reliable networks and reliability domination, IEEE Trans. Commun. 38 (1990) 2004–2009. https://doi.org/10.1109/26.61483
[2] Z.R. Bogdanowicz, Chordal 2-connected graphs and spanning trees, J. Graph Theory 76 (2014) 224–235. https://doi.org/10.1002/jgt.21761
[3] Z.R. Bogdanowicz, On family of graphs with minimum number of spanning trees, Graphs Combin. 29 (2013) 1647–1652. https://doi.org/10.1007/s00373-012-1228-1
[4] Z.R. Bogdanowicz, Undirected simple connected graphs with minimum number of spanning trees, Discrete Math. 309 (2009) 3074–3082. https://doi.org/10.1016/j.disc.2008.08.010
[5] A.K. Kelmans and V.M. Chelnokov, A certain polynomial of a graph and graphs with an extremal number of trees, J. Combin. Theory Ser. B 16 (1974) 197–214. https://doi.org/10.1016/0095-8956(74)90065-3
[6] L. Lovász, A characterization of perfect graphs, J. Combin. Theory Ser. B 13 (1972) 95–98. https://doi.org/10.1016/0095-8956(72)90045-7
[7] D.G. Luenberg, Linear and Nonlinear Programming, 2nd Ed. (Kluwer Academic-Reading, 2003).
[8] N. Mahadev and V. Peled, Threshold Graphs and Related Topics (Ann. Discrete Math. 56, North-Holland, Amstredam, 1995).
[9] A. Satyanarayana, L. Schoppmann and C.L. Suffel, A reliability-improving graph transformation with applications to network reliability, Networks 22 (1992) 209–216. https://doi.org/10.1002/net.3230220206
[10] N.C. Wormald, Counting labelled chordal graphs, Graphs Combin. 1 (1985) 193–200. https://doi.org/10.1007/BF02582944