@article{DMGT_2023_43_4_a6,
author = {Kemnitz, Arnfried and Marangio, Massimiliano},
title = {On the $\rho$-subdivision number of graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {979--997},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a6/}
}
Kemnitz, Arnfried; Marangio, Massimiliano. On the $\rho$-subdivision number of graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 979-997. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a6/
[1] S. Arumugam, (2019), private communication.
[2] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman & Hall/CRC, Boca Raton, 2009).
[3] M. Dettlaff, J. Raczek and I.G. Yero, Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs, Opuscula Math. 36 (2016) 575–588. https://doi.org/10.7494/OpMath.2016.36.5.575
[4] T.W. Haynes, S.M. Hedetniemi and S.T. Hedetniemi, Domination and independence subdivision numbers of graphs, Discuss. Math. Graph Theory 20 (2000) 271–280. https://doi.org/10.7151/dmgt.1126
[5] A. Kemnitz, M. Marangio and N. Movarraei, On the chromatic edge stability number of graphs, Graphs Combin. 34 (2018) 1539–1551. https://doi.org/10.1007/s00373-018-1972-y
[6] A. Kemnitz and M. Marangio, On the \rho-edge stability number of graphs, Discuss. Math. Graph Theory (2019), in press. https://doi.org/10.7151/dmgt.2255
[7] P. Mihók and G. Semanišin, On invariants of hereditary graph properties, Discrete Math. 307 (2007) 958–963. https://doi.org/10.1016/j.disc.2005.11.048
[8] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).
[9] M. Yamuna and K. Karthika, A survey on the effect of graph operations on the domination number of a graph, Internat. J. Engineering and Technology 8 (Dec 2016–Jan 2017) 2749–2771. https://doi.org/10.21817/ijet/2016/v8i6/160806234