Acyclic chromatic index of IC-planar graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 965-978

Voir la notice de l'article provenant de la source Library of Science

Two distinct crossings are independent if the end-vertices of any two pairs of crossing edges are disjoint. If a graph G has a drawing in the plane such that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. A proper edge coloring of a graph G is acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G is the least number of colors such that G has an acyclic edge coloring and denoted by χ_a^'(G). In this paper, we prove that χ_a^'(G)≤Δ(G)+17, for any IC-planar graph G with maximum degree Δ(G).
Keywords: acyclic chromatic index, maximum degree, IC-planar graph
@article{DMGT_2023_43_4_a5,
     author = {Song, Wenyao and Miao, Lianying and Zhao, Yueying and Zhu, Haiyang},
     title = {Acyclic chromatic index of {IC-planar} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {965--978},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a5/}
}
TY  - JOUR
AU  - Song, Wenyao
AU  - Miao, Lianying
AU  - Zhao, Yueying
AU  - Zhu, Haiyang
TI  - Acyclic chromatic index of IC-planar graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 965
EP  - 978
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a5/
LA  - en
ID  - DMGT_2023_43_4_a5
ER  - 
%0 Journal Article
%A Song, Wenyao
%A Miao, Lianying
%A Zhao, Yueying
%A Zhu, Haiyang
%T Acyclic chromatic index of IC-planar graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 965-978
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a5/
%G en
%F DMGT_2023_43_4_a5
Song, Wenyao; Miao, Lianying; Zhao, Yueying; Zhu, Haiyang. Acyclic chromatic index of IC-planar graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 965-978. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a5/