Acyclic chromatic index of IC-planar graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 965-978
Voir la notice de l'article provenant de la source Library of Science
Two distinct crossings are independent if the end-vertices of any two pairs of crossing edges are disjoint. If a graph G has a drawing in the plane such that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. A proper edge coloring of a graph G is acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G is the least number of colors such that G has an acyclic edge coloring and denoted by χ_a^'(G). In this paper, we prove that χ_a^'(G)≤Δ(G)+17, for any IC-planar graph G with maximum degree Δ(G).
Keywords:
acyclic chromatic index, maximum degree, IC-planar graph
@article{DMGT_2023_43_4_a5,
author = {Song, Wenyao and Miao, Lianying and Zhao, Yueying and Zhu, Haiyang},
title = {Acyclic chromatic index of {IC-planar} graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {965--978},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a5/}
}
TY - JOUR AU - Song, Wenyao AU - Miao, Lianying AU - Zhao, Yueying AU - Zhu, Haiyang TI - Acyclic chromatic index of IC-planar graphs JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 965 EP - 978 VL - 43 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a5/ LA - en ID - DMGT_2023_43_4_a5 ER -
Song, Wenyao; Miao, Lianying; Zhao, Yueying; Zhu, Haiyang. Acyclic chromatic index of IC-planar graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 965-978. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a5/