@article{DMGT_2023_43_4_a4,
author = {Paul, Subhabrata and Pradhan, Dinabandhu and Verma, Shaily},
title = {Vertex-edge domination in interval and bipartite permutation graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {947--963},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a4/}
}
TY - JOUR AU - Paul, Subhabrata AU - Pradhan, Dinabandhu AU - Verma, Shaily TI - Vertex-edge domination in interval and bipartite permutation graphs JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 947 EP - 963 VL - 43 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a4/ LA - en ID - DMGT_2023_43_4_a4 ER -
%0 Journal Article %A Paul, Subhabrata %A Pradhan, Dinabandhu %A Verma, Shaily %T Vertex-edge domination in interval and bipartite permutation graphs %J Discussiones Mathematicae. Graph Theory %D 2023 %P 947-963 %V 43 %N 4 %U http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a4/ %G en %F DMGT_2023_43_4_a4
Paul, Subhabrata; Pradhan, Dinabandhu; Verma, Shaily. Vertex-edge domination in interval and bipartite permutation graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 947-963. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a4/
[1] K.S. Booth and G.S. Lueker, Testing for consecutive ones property, interval graphs and graph planarity using PQ}-tree algorithms, J. Comput. System. Sci. 13 (1976) 335–379. https://doi.org/10.1016/S0022-0000(76)80045-1
[2] R. Boutrig and M. Chellali, Total vertex-edge domination, Int. J. Comput. Math. 95 (2018) 1820–1828. https://doi.org/10.1080/00207160.2017.1343469
[3] R. Boutrig, M. Chellali, T.W. Haynes and S.T. Hedetniemi, Vertex-edge domination in graphs, Aequationes Math. 90 (2016) 355–366. https://doi.org/10.1007/s00010-015-0354-2
[4] X.G. Chen, K. Yin and T. Gao, A note on independent vertex-edge domination in graphs, Discrete Optim. 25 (2017) 1–5. https://doi.org/10.1016/j.disopt.2017.01.002
[5] S. Chitra and R. Sattanathan, Global vertex-edge domination sets in graphs, in: Proc. Int. Math. Forum 7 (2012) 233–240.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker Inc., New York, 1998).
[8] M.A. Henning, S. Pal and D. Pradhan, Algorithm and hardness results on hop domination in graphs, Inform. Process. Lett. 153 (2020) 105872. https://doi.org/10.1016/j.ipl.2019.105872
[9] S.K. Jena and G.K. Das, Vertex-edge domination in unit disk graphs, in: Proc. of the 6th International Conference on Algorithms and Discrete Applied Mathematics, {Lecture Notes in Comput. Sci.} 12016 (2020) 67–78. https://doi.org/10.1007/978-3-030-39219-2_6
[10] B. Krishnakumari, M. Chellali and Y.B. Venkatakrishnan, Double vertex-edge domination, Discrete Math. Algorithms Appl. 09 (2017) 1750045. https://doi.org/10.1142/S1793830917500458
[11] B. Krishnakumari and Y.B. Venkatakrishnan, The outer-connected vertex edge domination number of a tree, Commun. Korean Math. Soc. 33 (2018) 361–369. https://doi.org/10.4134/CKMS.c150243
[12] B. Krishnakumari, Y.B. Venkatakrishnan and M. Krzywkowski, Bounds on the vertex-edge domination number of a tree, C. R. Math. Acad. Sci. Paris 352 (2014) 363–366. https://doi.org/10.1016/j.crma.2014.03.017
[13] T.H. Lai and S.S. Wei, Bipartite permutation graphs with application to the minimum buffer size problem, Discrete Appl. Math. 74 (1997) 33–55. https://doi.org/10.1016/S0166-218X(96)00014-5
[14] J.R. Lewis, Vertex-Edge and Edge-Vertex Parameters in Graphs, PhD Thesis, Clemson, University, Clemson} (2007). https://tigerprints.clemson.edu/all_dissertations/103
[15] J.R. Lewis, S.T. Hedetniemi, T.W. Haynes and G.H. Fricke, Vertex-edge domination, Util. Math. 81 (2010) 193–213.
[16] S. Paul and K. Ranjan, On vertex-edge and independent vertex-edge domination, in: Proc. of the 13th International Conference on Combinatorial Optimization and Applications, (Lecture Notes in Comput. Sci. 11949 2019) 437–448. https://doi.org/10.1007/978-3-030-36412-0_35
[17] K.W. Peters, Theoretical and Algorithmic Results on Domination and Connectivity, PhD Thesis (Clemson, University Clemson, 1986).
[18] G. Ramalingam and C. Pandu Rangan, A unified approach to domination problems on interval graphs, Inform. Process. Lett. 27 (1998) 271–274. https://doi.org/10.1016/0020-0190(88)90091-9
[19] J. Spinrad, A. Brandstädt and L. Stewart, Bipartite permutation graphs, Discrete Appl. Math. 18 (1987) 279–292. https://doi.org/10.1016/S0166-218X(87)80003-3
[20] R. Ziemann and P. Żyliński, Vertex-edge domination in cubic graphs, Discrete Math. 343 (2020) 112075. https://doi.org/10.1016/j.disc.2020.112075
[21] P. Żyliński, Vertex-edge domination in graphs, Aequationes Math. 93 (2019) 735–742. https://doi.org/10.1007/s00010-018-0609-9