Vertex-edge domination in interval and bipartite permutation graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 947-963

Voir la notice de l'article provenant de la source Library of Science

Given a graph G = (V,E), a vertex u ∈ V ve-dominates all edges incident to any vertex of N_G[u]. A set D ⊆ V is a vertex-edge dominating set if, for any edge e∈ E, there exists a vertex u ∈ D such that u ve-dominates e. Given a graph G, our goal is to find a minimum cardinality ve-dominating set of G. In this paper, we designed two linear-time algorithms to find a minimum cardinality ve-dominating set for interval and bipartite permutation graphs.
Keywords: vertex-edge domination, linear time algorithm, interval graphs, bipartite permutation graphs
@article{DMGT_2023_43_4_a4,
     author = {Paul, Subhabrata and Pradhan, Dinabandhu and Verma, Shaily},
     title = {Vertex-edge domination in interval and bipartite permutation graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {947--963},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a4/}
}
TY  - JOUR
AU  - Paul, Subhabrata
AU  - Pradhan, Dinabandhu
AU  - Verma, Shaily
TI  - Vertex-edge domination in interval and bipartite permutation graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 947
EP  - 963
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a4/
LA  - en
ID  - DMGT_2023_43_4_a4
ER  - 
%0 Journal Article
%A Paul, Subhabrata
%A Pradhan, Dinabandhu
%A Verma, Shaily
%T Vertex-edge domination in interval and bipartite permutation graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 947-963
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a4/
%G en
%F DMGT_2023_43_4_a4
Paul, Subhabrata; Pradhan, Dinabandhu; Verma, Shaily. Vertex-edge domination in interval and bipartite permutation graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 947-963. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a4/