@article{DMGT_2023_43_4_a20,
author = {Gao, Yanhong and Li, Ping and Li, Xueliang},
title = {Extremal graphs and classification of planar graphs by {MC-numbers}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1253--1272},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a20/}
}
TY - JOUR AU - Gao, Yanhong AU - Li, Ping AU - Li, Xueliang TI - Extremal graphs and classification of planar graphs by MC-numbers JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 1253 EP - 1272 VL - 43 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a20/ LA - en ID - DMGT_2023_43_4_a20 ER -
Gao, Yanhong; Li, Ping; Li, Xueliang. Extremal graphs and classification of planar graphs by MC-numbers. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1253-1272. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a20/
[1] X. Bai and X. Li, Graph colorings under global structural conditions. arXiv: 2008.07163
[2] J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer-Verlag, London, 2008).
[3] Q. Cai, X. Li and D. Wu, Erdős-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. 33 (2017) 123–131. https://doi.org/10.1007/s10878-015-9938-y
[4] Q. Cai, X. Li and D. Wu, Some extremal results on the colorful monochromatic vertex-connectivity of a graph, J. Comb. Optim. 35 (2018) 1300–1311. https://doi.org/10.1007/s10878-018-0258-x
[5] Y. Caro and R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311 (2011) 1786–1792. https://doi.org/10.1016/j.disc.2011.04.020
[6] D. González-Moreno, M. Guevara and J.J. Montellano-Ballesteros, Monochromatic connecting colorings in strongly connected oriented graphs, Discrete Math. 340 (2017) 578–584. https://doi.org/10.1016/j.disc.2016.11.016
[7] R. Gu, X. Li, Z. Qin and Y. Zhao, More on the colorful monochromatic connectivity, Bull. Malays. Math. Sci. Soc. 40 (2017) 1769–1779. https://doi.org/10.1007/s40840-015-0274-2
[8] Z. Huang and X. Li, Hardness results for three kinds of colored connections of graphs, Theoret. Comput. Sci. 841 (2020) 27–38. https://doi.org/10.1016/j.tcs.2020.06.030
[9] Z. Jin, X. Li and K. Wang, The monochromatic connectivity of graphs, Taiwanese J. Math. 24 (2020) 785–815. https://doi.org/10.11650/tjm/200102
[10] Z. Jin, X. Li and Y. Yang, Extremal graphs with maximum monochromatic connectivity, Discrete Math. 343 (2020) 111968. https://doi.org/10.1016/j.disc.2020.111968
[11] P. Li and X. Li, Monochromatic k-edge-connection colorings of graphs, Discrete Math. 343 (2020) 111679. https://doi.org/10.1016/j.disc.2019.111679
[12] P. Li and X. Li, Rainbow monochromatic k-edge-connection colorings of graphs. arXiv: 2001.01419
[13] X. Li and D. Wu, A survey on monochromatic connections of graphs, Theory Appl. Graphs 0(1) (2018) Art.4. https://doi.org/10.20429/tag.2017.000104
[14] Y. Mao, Z. Wang, F. Yanling and C. Ye, Monochromatic connectivity and graph products, Discrete Math. Algorithms Appl. 8 (2016) 1650011. https://doi.org/10.1142/S1793830916500117