@article{DMGT_2023_43_4_a18,
author = {Yetim, Mehmet Akif},
title = {$L(p,q)$-labeling of graphs with interval representations},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1215--1235},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a18/}
}
Yetim, Mehmet Akif. $L(p,q)$-labeling of graphs with interval representations. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1215-1235. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a18/
[1] A.A. Bertossi, C.M. Pinotti and R.B. Tan, Efficient use of radio spectrum in wireless networks with channel separation between close stations, in: DIALM '00: Proceedings of the 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, (ACM, New York 2000) 18–27. https://doi.org/10.1145/345848.345853
[2] H.L. Bodlaender, T. Kloks, R.B. Tan and J. van Leeuwen, Approximations for \lambda-colorings of graphs, Comput. J. 47 (2004) 193–204. https://doi.org/10.1093/comjnl/47.2.193
[3] D.E. Brown, Variations on Interval Graphs, Ph.D. Thesis (University of Colorado Denver, 2004).
[4] D.E. Brown, B.M. Flesch and L.J. Langley, Interval k-graphs and orders, Order 35 (2018) 495–514. https://doi.org/10.1007/s11083-017-9445-0
[5] D.E. Brown, S.C. Flink and J.R. Lundgren, Interval k-graphs, Congr. Numer. 156 (2002) 79–93.
[6] T. Calamoneri, The {L}(h, k)-labelling problem: An updated survey and annotated bibliography, Comput. J. 54 (2011) 1344–1371. https://doi.org/10.1093/comjnl/bxr037
[7] T. Calamoneri, S. Caminiti, R. Petreschi, S. Olariu, On the {L}(h, k)-labeling of co-comparability graphs and circular-arc graphs, Networks 53 (2009) 27–34. https://doi.org/10.1002/net.20257
[8] M.R. Cerioli and D.F.D. Posner, On {L}(2,1)-coloring split, chordal bipartite, and weakly chordal graphs, Discrete Appl. Math. 160 (2012) 2655–2661. https://doi.org/10.1016/j.dam.2012.03.018
[9] G.J. Chang and D. Kuo, The {L}(2,1)-labeling problem on graphs, SIAM J. Discrete Math. 9 (1996) 309–316. https://doi.org/10.1137/S0895480193245339
[10] G.J. Chang, W.-T. Ke, D. Kuo, D.D.-F. Liu and R.K. Yeh, On L(d,1)-labelings of graphs, Discrete Math. 220 (2000) 57–66. https://doi.org/10.1016/S0012-365X(99)00400-8
[11] Y. Civan, Z. Deniz and M.A. Yetim, Bounding the chromatic number of squares of {K}4-minor-free graphs, Discrete Math. 342 (2019) 1894–1903. https://doi.org/10.1016/j.disc.2019.03.011
[12] D.J. Decock and B.M. Flesch, Asteroidal-triple-free interval k-graphs, Australas. J. Combin. 74 (2019) 227–238.
[13] D. Gonçalves, On the {L}(p,1)-labelling of graphs, Discrete Math. 308 (2008) 1405–1414. https://doi.org/10.1016/j.disc.2007.07.075
[14] J.R. Griggs and R.Y. Yeh, Labelling graphs with a condition at distance 2, SIAM J. Discrete Math. 5 (1992) 586–595. https://doi.org/10.1137/0405048
[15] F. Havet, B. Reed and J.-S. Sereni, {L}(2,1)-labelling of graphs, in: SODA '08: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2008) 621–630.
[16] Y.-Z. Huang, C.-Y Chiang, L.-H. Huang and H.-G Yeh, On {L}(2,1)-labeling of generalized Petersen graphs, J. Comb. Optim. 24 (2012) 266–279. https://doi.org/10.1007/s10878-011-9380-8
[17] J.-H. Kang, {L}(2,1)-labeling of Hamiltonian graphs with maximum degree 3, SIAM J. Discrete Math. 22 (2008) 213–230. https://doi.org/10.1137/050632609
[18] N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics (Elsevier, North Holland, 1995).
[19] B.S. Panda and P. Goel, {L}(2,1)-labeling of perfect elimination bipartite graphs, Discrete Appl. Math. 159 (2011) 1878–1888. https://doi.org/10.1016/j.dam.2010.07.008
[20] B.S. Panda and P. Goel, {L}(2,1)-labeling of dually chordal graphs and strongly orderable graphs, Inform. Process. Lett. 112 (2012) 552–556. https://doi.org/10.1016/j.ipl.2012.04.003
[21] S. Paul, M. Pal and A. Pal, {L}(2,1)-labeling of permutation and bipartite permutation graphs, Math. Comput. Sci. 9 (2015) 113–123. https://doi.org/10.1007/s11786-014-0180-2
[22] D. Sakai, Labeling chordal graphs: distance two condition, SIAM J. Discrete Math. 7 (1994) 133–140. https://doi.org/10.1137/S0895480191223178
[23] W.T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory (Johns Hopkins University Press, Baltimore, 2001).