Biholes in balanced bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1203-1213

Voir la notice de l'article provenant de la source Library of Science

A bihole in a bipartite graph G with partite sets A and B is an independent set I in G with |I∩ A|=|I∩ B|. We prove lower bounds on the largest order of biholes in balanced bipartite graphs subject to conditions involving the vertex degrees and the average degree.
Keywords: bihole, independent set
@article{DMGT_2023_43_4_a17,
     author = {Ehard, Stefan and Mohr, Elena and Rautenbach, Dieter},
     title = {Biholes in balanced bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1203--1213},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a17/}
}
TY  - JOUR
AU  - Ehard, Stefan
AU  - Mohr, Elena
AU  - Rautenbach, Dieter
TI  - Biholes in balanced bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 1203
EP  - 1213
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a17/
LA  - en
ID  - DMGT_2023_43_4_a17
ER  - 
%0 Journal Article
%A Ehard, Stefan
%A Mohr, Elena
%A Rautenbach, Dieter
%T Biholes in balanced bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 1203-1213
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a17/
%G en
%F DMGT_2023_43_4_a17
Ehard, Stefan; Mohr, Elena; Rautenbach, Dieter. Biholes in balanced bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1203-1213. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a17/