@article{DMGT_2023_43_4_a17,
author = {Ehard, Stefan and Mohr, Elena and Rautenbach, Dieter},
title = {Biholes in balanced bipartite graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1203--1213},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a17/}
}
Ehard, Stefan; Mohr, Elena; Rautenbach, Dieter. Biholes in balanced bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1203-1213. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a17/
[1] M. Axenovich, C. Tompkins and L. Weber, Large homogeneous subgraphs in bipartite graphs with forbidden induced subgraphs, J. Graph Theory 97 (2021) 34–46. https://doi.org/10.1002/jgt.22639
[2] M. Axenovich, J.-S. Sereni, R. Snyder and L. Weber, Bipartite independence number in graphs with bounded maximum degree, SIAM J. Discrete Math. 35 (2021) 1136–1148. https://doi.org/10.1137/20M1321760
[3] Y. Caro, New results on the independence number (Technical Report, Tel-Aviv University, 1979).
[4] M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method (Springer-Verlag, Berlin, 2002). https://doi.org/10.1007/978-3-642-04016-0
[5] P. Turán, An extremal problem in graph theory, Matematikai és Fizikai Lapok 48 (1941) 436–452, in Hungarian.
[6] V.K. Wei, A Lower Bound on the Stability Number of a Simple Graph (Technical Memorandum, TM 81–11217–9, Bell Laboratories, 1981).