@article{DMGT_2023_43_4_a16,
author = {Hanh, Dang Dinh},
title = {Spanning trees with a bounded number of branch vertices in a $K_{1,4}$-free graph},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1195--1202},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a16/}
}
TY - JOUR
AU - Hanh, Dang Dinh
TI - Spanning trees with a bounded number of branch vertices in a $K_{1,4}$-free graph
JO - Discussiones Mathematicae. Graph Theory
PY - 2023
SP - 1195
EP - 1202
VL - 43
IS - 4
UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a16/
LA - en
ID - DMGT_2023_43_4_a16
ER -
Hanh, Dang Dinh. Spanning trees with a bounded number of branch vertices in a $K_{1,4}$-free graph. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1195-1202. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a16/
[1] Y. Chen, P.H. Ha and D.D. Hanh, Spanning trees with at most 4 leaves in K1,5-free graphs, Discrete Math. 342 (2019) 2342–2349. https://doi.org/10.1016/j.disc.2019.05.005
[2] E. Flandrin, T. Kaiser, R. Kužel, H. Li and Z. Ryjáček, Neighborhood unions and extremal spanning trees, Discrete Math. 308 (2008) 2343–2350. https://doi.org/10.1016/j.disc.2007.04.071
[3] L. Gargano, M. Hammar, P. Hell, L. Stacho and U. Vaccaro, Spanning spiders and light-splitting switches, Discrete Math. 285 (2004) 83–95. https://doi.org/10.1016/j.disc.2004.04.005
[4] R. Gould and W. Shull, On a conjecture on spanning trees with few branch vertices, J. Combin. Math. Combin. Comput. 108 (2019) 259–283.
[5] R. Gould and W. Shull, On spanning trees with few branch vertices, Discrete Math. 343 (2020) 111581. https://doi.org/10.1016/j.disc.2019.06.037
[6] Z. Hu and P. Sun, Spanning 5-ended trees in K1,5-free graphs, Bull. Malays. Math. Sci. Soc. 43 (2020) 2565–2586. https://doi.org/10.1007/s40840-019-00821-w
[7] M. Kano, A. Kyaw, H. Matsuda, K. Ozeki, A. Saito and T. Yamashita, Spanning trees with a bounded number of leaves in a claw-free graph, Ars Combin. 103 (2012) 137–154.
[8] A. Kyaw, Spanning trees with at most 3 leaves in K1,4-free graphs, Discrete Math. 309 (2009) 6146–6148. https://doi.org/10.1016/j.disc.2009.04.023
[9] A. Kyaw, Spanning trees with at most k leaves in K1,4-free graphs, Discrete Math. 311 (2011) 2135–2142. https://doi.org/10.1016/j.disc.2011.06.025
[10] H. Matsuda, K. Ozeki and T. Yamashita, Spanning trees with a bounded number of branch vertices in a claw-free graph, Graphs Combin. 30 (2014) 429–437. https://doi.org/10.1007/s00373-012-1277-5
[11] M.M. Matthews and D.P. Sumner, Longest paths and cycles in K1,3-free graphs, J. Graph Theory 9 (1985) 269–277. https://doi.org/10.1002/jgt.3190090208