Spanning trees with a bounded number of branch vertices in a $K_{1,4}$-free graph
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1195-1202
Voir la notice de l'article provenant de la source Library of Science
In 2008, it was conjectured that, for any positive integer k, a connected n-vertex graph G must contain a spanning tree with at most k branch vertices if σ_k+3(G)≥ n-k. In this paper, we resolve this conjecture in the affirmative for the graphs K_ 1,4-free.
Keywords:
spanning tree, branch vertices, $K_{1,4}$-free
@article{DMGT_2023_43_4_a16,
author = {Hanh, Dang Dinh},
title = {Spanning trees with a bounded number of branch vertices in a $K_{1,4}$-free graph},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1195--1202},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a16/}
}
TY - JOUR
AU - Hanh, Dang Dinh
TI - Spanning trees with a bounded number of branch vertices in a $K_{1,4}$-free graph
JO - Discussiones Mathematicae. Graph Theory
PY - 2023
SP - 1195
EP - 1202
VL - 43
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a16/
LA - en
ID - DMGT_2023_43_4_a16
ER -
Hanh, Dang Dinh. Spanning trees with a bounded number of branch vertices in a $K_{1,4}$-free graph. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1195-1202. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a16/