@article{DMGT_2023_43_4_a15,
author = {Araujo-Pardo, Gabriela and Barrera-Cruz, Fidel and Garc{\'\i}a-Col{\'\i}n, Natalia},
title = {Biregular (and regular) planar cages},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1171--1194},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a15/}
}
TY - JOUR AU - Araujo-Pardo, Gabriela AU - Barrera-Cruz, Fidel AU - García-Colín, Natalia TI - Biregular (and regular) planar cages JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 1171 EP - 1194 VL - 43 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a15/ LA - en ID - DMGT_2023_43_4_a15 ER -
Araujo-Pardo, Gabriela; Barrera-Cruz, Fidel; García-Colín, Natalia. Biregular (and regular) planar cages. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1171-1194. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a15/
[1] E. Abajo and A. Diánez, Exact values of ex(\nu;{C3,C4, \ldots,Cn}), Discrete Appl. Math. 158 (2010) 1869–1878. https://doi.org/10.1016/j.dam.2010.08.002
[2] M. Abreu, G. Araujo-Pardo, C. Balbuena, D. Labbate and G. López-Chávez, Biregular cages of girth five, Electron. J. Combin. 20(1) (2013) #P71. https://doi.org/10.37236/2594
[3] G. Araujo-Pardo, C. Balbuena, G. López-Chávez and L. Montejano, On bi-regular cages of even girth at least 8, Aequationes Math. 86 (2013) 201–216. https://doi.org/10.1007/s00010-013-0227-5
[4] G. Araujo-Pardo, G. Exoo and R. Jajcay, Small bi-regular graphs of even girth, Discrete Math. 339 (2016) 658–667. https://doi.org/10.1016/j.disc.2015.10.009
[5] G. Araujo, D. González, J.J. Montellano-Ballesteros and O. Serra, On upper bounds and connectivity of cages, Australas. J. Combin. 38 (2007) 221–228.
[6] G. Araujo-Pardo, C. Hernández-Cruz and J.J. Montellano-Ballesteros, Mixed cages, Graphs Combin. 35 (2019) 989–999. https://doi.org/10.1007/s00373-019-02050-1
[7] G. Araujo-Pardo, R. Jajcay and A. Ramos Rivera, On a relation between bipartite biregular cages, block designs and generalized polygons, submitted.
[8] G. Araujo-Pardo and G.N. López, On new record graphs close to bipartite Moore graphs, submitted.
[9] G. Brinkmann and B.D. McKay, Fast generation of planar graphs (expanded version). https://users.cecs.anu.edu.au/~bdm/plantri
[10] G. Chartrand, R.J. Gould and S.F. Kapoor, Graphs with prescribed degree sets and girth, Period. Math. Hungar. 12 (1981) 261–266. https://doi.org/10.1007/BF01849614
[11] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs (6th Ed., Chapman and Hall, 2015). https://doi.org/10.1201/b19731
[12] P. Erdős and H. Sachs, Regulare Graphen gegebener Taillenweite mit minimaler Knotenzahl, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math-Nat. 12 (1963) 251–258.
[13] G. Exoo and R. Jajcay, Dynamic cage survey, Electron. J. Combin., Dynamic Surveys (2013) #DS16. https://doi.org/10.37236/37
[14] G. Exoo and R. Jajcay, Bi-regular cages of odd girth, J. Graph Theory 81 (2016) 50–56. https://doi.org/10.1002/jgt.21860
[15] S. Filipovski, On bipartite cages of excess 4, Electron. J. Combin. 24(1) (2017) #P1.40. https://doi.org/10.37236/6693
[16] S. Filipovski, A. Ramos Rivera and R. Jajcay, On biregular bipartite graphs of small excess, Discrete Math. 342 (2019) 2066–2076. https://doi.org/10.1016/j.disc.2019.04.004
[17] F. Garbe, On graphs with excess or defect 2, Discrete Appl. Math. 180 (2015) 81–88. https://doi.org/10.1016/j.dam.2014.07.022
[18] S.F. Kapoor, A.D. Polimeni and C.E. Wall, Degree sets for graphs, Fund. Math. 95 (1977) 189–194. https://doi.org/10.4064/fm-95-3-189-194
[19] M. Miller and J. Sirán, Moore graphs and beyond: A survey of the degree/diameter problem, Electron. J. Combin., Dynamic Surveys (2013) #DS14. https://doi.org/10.37236/35
[20] The Sage Developers, Sagemath, the Sage Mathematics Software System, Version 8.4 (2018). https://www.sagemath.org
[21] W.T. Tutte, A family of cubical graphs, Math. Proc. Cambridge Philos. Soc. 43 (1947) 459–474. https://doi.org/10.1017/S0305004100023720