Total and paired domination stability in prisms
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1147-1169 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

A set D of vertices in an isolate-free graph is a total dominating set if every vertex is adjacent to a vertex in D. If the set D has the additional property that the subgraph induced by D contains a perfect matching, then D is a paired dominating set of G. The total domination number γ_t(G) and the paired domination number γ_pr(G) of a graph G are the minimum cardinalities of a total dominating set and a paired dominating set of G, respectively. The total domination stability (respectively, paired domination stability) of G, denoted st_γ_t(G) (respectively, st_γ_pr(G)), is the minimum size of a non-isolating set of vertices in G whose removal changes the total domination number (respectively, paired domination number). In this paper, we study total and paired domination stability in prisms.
Keywords: total domination stability, paired domination stability, prism, hypercube
@article{DMGT_2023_43_4_a14,
     author = {Gorzkowska, Aleksandra and Henning, Michael A. and Pil\'sniak, Monika and Tumidajewicz, El\.zbieta},
     title = {Total and paired domination stability in prisms},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1147--1169},
     year = {2023},
     volume = {43},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a14/}
}
TY  - JOUR
AU  - Gorzkowska, Aleksandra
AU  - Henning, Michael A.
AU  - Pilśniak, Monika
AU  - Tumidajewicz, Elżbieta
TI  - Total and paired domination stability in prisms
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 1147
EP  - 1169
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a14/
LA  - en
ID  - DMGT_2023_43_4_a14
ER  - 
%0 Journal Article
%A Gorzkowska, Aleksandra
%A Henning, Michael A.
%A Pilśniak, Monika
%A Tumidajewicz, Elżbieta
%T Total and paired domination stability in prisms
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 1147-1169
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a14/
%G en
%F DMGT_2023_43_4_a14
Gorzkowska, Aleksandra; Henning, Michael A.; Pilśniak, Monika; Tumidajewicz, Elżbieta. Total and paired domination stability in prisms. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1147-1169. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a14/

[1] M. Amraee, N. Jafari Rad and M. Maghasedi, Roman domination stability in graphs, Math. Rep. (Bucur.) 21(71) (2019) 193–204.

[2] S. Arumugam and R. Kala, Domination parameters of hypercubes, J. Indian Math. Soc. (N.S.) 65 (1998) 31–38.

[3] J. Azarija, M.A. Henning and S. Klavžar, (Total) domination in prisms, Electron. J. Combin. 24(1) (2017) #P1.19. https://doi.org/10.37236/6288

[4] A. Aytaç and B. Atay Atakul, Exponential domination critical and stability in some graphs, Internat. J. Found. Comput. Sci. 2019 (781–791). https://doi.org/10.1142/S0129054119500217

[5] D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alternation sets in graphs, Discrete Math. 47 (1983) 153–161. https://doi.org/10.1016/0012-365X(83)90085-7

[6] W. Goddard and M.A. Henning, A note on domination and total domination in prisms, J. Comb. Optim. 35 (2018) 14–20. https://doi.org/10.1007/s10878-017-0150-0

[7] A. Gorzkowska, M.A. Henning, M. Pilśniak and E. Tumidajewicz, Paired domination stability in graphs, (2020), manuscript.

[8] F. Harary and M. Livingston, Independent domination in hypercubes, Appl. Math. Lett. 6 (1993) 27–28. https://doi.org/10.1016/0893-9659(93)90027-K

[9] T.W. Haynes, M.A. Henning and L.C. van der Merwe, Domination and total domination in complementary prisms, J. Comb. Optim. 18 (2009) 23–37. https://doi.org/10.1007/s10878-007-9135-8

[10] T.W. Haynes and P.J. Slater, Paired domination in graphs, Networks 32 (1998) 199–206. https://doi.org/10.1002/(SICI)1097-0037(199810)32:33.0.CO;2-F

[11] M.A. Henning and M. Krzywkowski, Total domination stability in graphs, Discrete Appl. Math. 236 (2018) 246–255. https://doi.org/10.1016/j.dam.2017.07.022

[12] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs Combin. 21 (2005) 63–69. https://doi.org/10.1007/s00373-004-0586-8

[13] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013). https://doi.org/10.1007/978-1-4614-6525-6

[14] Z. Li, Z. Shao and S.J. Xu, 2-rainbow domination stability of graphs, J. Comb. Optim. 38 (2019) 836–845. https://doi.org/10.1007/s10878-019-00414-0

[15] M. Mollard, On perfect codes in Cartesian product of graphs, European J. Combin. 32 (2011) 398–403. https://doi.org/10.1016/j.ejc.2010.11.007

[16] C.M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discuss. Math. Graph Theory 31 (2011) 5–23. https://doi.org/10.7151/dmgt.1526

[17] P.R.J. Östergård and U. Blass, On the size of optimal binary codes of length 9 and covering radius 1, IEEE Trans. Inform. Theory 47 (2001) 2556–2557. https://doi.org/10.1109/18.945268

[18] N. Jafari Rad, E. Sharifi and M. Krzywkowski, Domination stability in graphs, Discrete Math. 339 (2016) 1909–1914. https://doi.org/10.1016/j.disc.2015.12.026

[19] G.J.M. van Wee, Improved sphere bounds on the covering radius of codes, IEEE Trans. Inform. Theory 34 (1988) 237–245. https://doi.org/10.1109/18.2632