@article{DMGT_2023_43_4_a13,
author = {Eoh, Soogang and Choi, Myungho and Kim, Suh-Ryung},
title = {The niche graphs of multipartite tournaments},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1123--1146},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a13/}
}
TY - JOUR AU - Eoh, Soogang AU - Choi, Myungho AU - Kim, Suh-Ryung TI - The niche graphs of multipartite tournaments JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 1123 EP - 1146 VL - 43 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a13/ LA - en ID - DMGT_2023_43_4_a13 ER -
Eoh, Soogang; Choi, Myungho; Kim, Suh-Ryung. The niche graphs of multipartite tournaments. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1123-1146. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a13/
[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, 2nd Ed. (Springer-Verlag, London, 2009). https://doi.org/10.1007/978-1-84800-998-1
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, NewYork-Amsterdam-Oxford, 1982).
[3] S. Bowser and C. Cable, Some recent results on niche graphs, Discrete Appl. Math. 30 (1991) 101–108. https://doi.org/10.1016/0166-218X(91)90036-V
[4] S. Bowser, C. Cable and R. Lundgren, Niche graphs and mixed pair graphs of tournaments, J. Graph Theory 31 (1999) 319–332. https://doi.org/10.1002/(SICI)1097-0118(199908)31:43.0.CO;2-S
[5] C. Cable, K.F. Jones, R. Lundgren and S. Seager, Niche graphs, Discrete Appl. Math. 23 (1989) 231–241. https://doi.org/10.1016/0166-218X(89)90015-2
[6] H.H. Cho, S-R. Kim and Y. Nam, The m-step competition graph of a digraph, Discrete Appl. Math. 105 (2000) 115–127. https://doi.org/10.1016/S0166-218X(00)00214-6
[7] J.E. Cohen, Interval graphs and food webs: a finding and a problem (RAND Corporation Document 17696-PR, Santa Monica, CA, 1968).
[8] S. Eoh, J. Choi, S-R. Kim and M. Oh, The niche graphs of bipartite tournaments, Discrete Appl. Math. 282 (2020) 86–95. https://doi.org/10.1016/j.dam.2019.11.001
[9] K.A. Factor and S.K. Merz, The (1,2)-step competition graph of a tournament, Discrete Appl. Math. 159 (2011) 100–103. https://doi.org/10.1016/j.dam.2010.10.008
[10] P.C. Fishburn and W.V. Gehrlein, Niche numbers, J. Graph Theory 16 (1992) 131–139. https://doi.org/10.1002/jgt.3190160204
[11] S.-R. Kim, T.A. McKee, F.R. McMorris and F.S. Roberts, p-competition graphs, Linear Algebra Appl. 217 (1995) 167–178. https://doi.org/10.1016/0024-3795(94)00060-Q
[12] F.S. Roberts and L. Sheng, Phylogeny graphs of arbitrary digraphs, in: Mathematical Hierarchies and Biology, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 37 (1997) 233–238. https://doi.org/10.1090/dimacs/037/15
[13] D.D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269–280. https://doi.org/10.1016/0166-218X(87)90030-8
[14] S. Seager, Cyclic niche graphs and grids, Ars Combin. 49 (1998) 21–32.
[15] P. van't Hof and D. Paulusma, A new characterization of P6-free graphs, Discrete Appl. Math. 158 (2010) 731–740. https://doi.org/10.1016/j.dam.2008.08.025
[16] L. Volkmann, Multipartite tournaments: A survey, Discrete Appl. Math. 307 (2007) 3097–3129. https://doi.org/10.1016/j.disc.2007.03.053
[17] A. Yeo, Semicomplete multipartite digraphs, in: Classes of Directed Graphs, J. Bang-Jensen and G. Gutin (Ed(s)), (Springer Monogr. Math. 2018) 297–340. https://doi.org/10.1007/978-3-319-71840-8_7