$ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1091-1102

Voir la notice de l'article provenant de la source Library of Science

An Euler tour in a hypergraph H is a closed walk that traverses each edge of H exactly once and an Euler family is a family of closed walks that jointly traverse each edge of H exactly once. An 𝓁-covering k-hypergraph, for 2 ≤𝓁 lt; k, is a k-uniform hypergraph in which every 𝓁-subset of vertices lie together in at least one edge. In this paper we prove that every 𝓁-covering k-hypergraph, for k ≥ 3, admits an Euler family.
Keywords: l-covering k-hypergraph, Euler family, Euler tour, Lovász's (g,f)-factor theorem
@article{DMGT_2023_43_4_a11,
     author = {\v{S}ajna, Mateja and Wagner, Andrew},
     title = {$ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1091--1102},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/}
}
TY  - JOUR
AU  - Šajna, Mateja
AU  - Wagner, Andrew
TI  - $ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 1091
EP  - 1102
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/
LA  - en
ID  - DMGT_2023_43_4_a11
ER  - 
%0 Journal Article
%A Šajna, Mateja
%A Wagner, Andrew
%T $ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 1091-1102
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/
%G en
%F DMGT_2023_43_4_a11
Šajna, Mateja; Wagner, Andrew. $ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1091-1102. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/