$ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1091-1102 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

An Euler tour in a hypergraph H is a closed walk that traverses each edge of H exactly once and an Euler family is a family of closed walks that jointly traverse each edge of H exactly once. An 𝓁-covering k-hypergraph, for 2 ≤𝓁 lt; k, is a k-uniform hypergraph in which every 𝓁-subset of vertices lie together in at least one edge. In this paper we prove that every 𝓁-covering k-hypergraph, for k ≥ 3, admits an Euler family.
Keywords: l-covering k-hypergraph, Euler family, Euler tour, Lovász's (g,f)-factor theorem
@article{DMGT_2023_43_4_a11,
     author = {\v{S}ajna, Mateja and Wagner, Andrew},
     title = {$ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1091--1102},
     year = {2023},
     volume = {43},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/}
}
TY  - JOUR
AU  - Šajna, Mateja
AU  - Wagner, Andrew
TI  - $ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 1091
EP  - 1102
VL  - 43
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/
LA  - en
ID  - DMGT_2023_43_4_a11
ER  - 
%0 Journal Article
%A Šajna, Mateja
%A Wagner, Andrew
%T $ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 1091-1102
%V 43
%N 4
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/
%G en
%F DMGT_2023_43_4_a11
Šajna, Mateja; Wagner, Andrew. $ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1091-1102. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/

[1] M.A. Bahmanian and M. Šajna, Connection and separation in hypergraphs, Theory Appl. Graphs 2 (2015) Art. 5. https://doi.org/10.20429/tag.2015.020205

[2] M.A. Bahmanian and M. Šajna, Quasi-eulerian hypergraphs, Electron. J. Combin. 24 (2017) #P3.30. https://doi.org/10.37236/6361

[3] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, London, 2008).

[4] Z. Lonc and P. Naroski, On tours that contain all edges of a hypergraph, Electron. J. Combin. 17 (2010) #R144. https://doi.org/10.37236/416

[5] L. Lovász, The factorization of graphs II}, Acta Math. Acad. Sci. Hungar. 23 (1972) 223–246. https://doi.org/10.1007/BF01889919

[6] M. Šajna and A. Wagner, Triple systems are eulerian, J. Combin. Des. 25 (2017) 185–191. https://doi.org/10.1002/jcd.21536

[7] M. Šajna and A. Wagner, Covering hypergraphs are eulerian. arXiv: 2101.04561