$ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1091-1102
Voir la notice de l'article provenant de la source Library of Science
An Euler tour in a hypergraph H is a closed walk that traverses each edge of H exactly once and an Euler family is a family of closed walks that jointly traverse each edge of H exactly once. An 𝓁-covering k-hypergraph, for 2 ≤𝓁 lt; k, is a k-uniform hypergraph in which every 𝓁-subset of vertices lie together in at least one edge.
In this paper we prove that every 𝓁-covering k-hypergraph, for k ≥ 3, admits an Euler family.
Keywords:
l-covering k-hypergraph, Euler family, Euler tour, Lovász's (g,f)-factor theorem
@article{DMGT_2023_43_4_a11,
author = {\v{S}ajna, Mateja and Wagner, Andrew},
title = {$ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1091--1102},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/}
}
TY - JOUR
AU - Šajna, Mateja
AU - Wagner, Andrew
TI - $ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian
JO - Discussiones Mathematicae. Graph Theory
PY - 2023
SP - 1091
EP - 1102
VL - 43
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/
LA - en
ID - DMGT_2023_43_4_a11
ER -
Šajna, Mateja; Wagner, Andrew. $ \mathcal{l} $-covering $k$-hypergraphs are quasi-eulerian. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1091-1102. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a11/